Loading

Regressor Fitting Of Feature Importance For Customer Segment Prediction With Ensembling Schemes Using Machine Learning
M. Shyamala Devi1, Rincy Merlin Mathew2, R. Suguna3

1M. Shyamala Devi, Associate Professor, Computer Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu, India.
2Rincy Merlin Mathew, Lecturer, Department of Computer Science, College of Science and Arts, Khamis Mushayt, King Khalid university, Abha, Asir, Saudi Arabia.
3R. Suguna, Professor, Computer Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu, India.
Manuscript received on July 20, 2019. | Revised Manuscript received on August 10, 2019. | Manuscript published on August 30, 2019. | PP: 952-956 | Volume-8 Issue-6, August 2019. | Retrieval Number: F8255088619/2019©BEIESP | DOI: 10.35940/ijeat.F8255.088619
Open Access | Ethics and Policies | Cite | Mendeley
© The Authors. Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Abstract: Prediction of client behavior and their feedback remains as a challenging task in today’s world for all the manufacturing companies. The companies are struggling to increase their profit and annual turnover due to the lack of exact prediction of customer like and dislike. This leads to the accomplishment of machine learning algorithms for the prediction of customer demands. This paper attempts to identify the important features of the wine data set extracted from UCI Machine learning repository for the prediction of customer segment. The important features are extracted for the various ensembling methods like Ada boost regressor, Ada boost classifier, Random forest regressor, Extra Trees Regressor, Gradient booster regressor. The extracted feature importance of each of the ensembling methods is then fitted with logistic regression to analyze the performance. The same extracted feature importance of each of the ensembling methods are subjected to feature scaling and then fitted with logistic regression to analyze the performance. The Performance analysis is done with the performance metric such as Mean Squared error (MSE), Mean Absolute error (MAE), R2 Score, Explained Variance Score (EVS) and Mean Squared Log Error (MSLE). Experimental results shows that after applying feature scaling, the feature importance extracted from the Extra Tree Regressor is found to be effective with the MSE of 0.04, MAE of 0.03, R2 Score of 94%, EVS of 0.9 and MSLE of 0.01 as compared to other ens embling methods.
Keywords: Machine Learning, Mean Squared error, Mean Absolute error, R2 Score, Explained Variance Score and Mean Squared Log Error.