Loading

Electromagnetic Compatibility Parameters of an Airborne Slot Antenna System
Vladimir N. Pichugin1, Anton A. Soldatov2, Olga N. Majorova3, Marina N. Paravina4, Olga A. Dubrovina5

1Pichugin Vladimir Nikolaevich, Department of higher mathematics and information technologies, Federal state budgetary educational institution of higher education “Chuvash state University named after I.N. Ulyanov”, Alatyr branch, Alatyr, Chuvashia, Russian Federation.
2Soldatov Anton Alexandrovich, Department of higher mathematics and information technologies, Federal state budgetary educational institution of higher education “Chuvash state University named after I.N. Ulyanov”, Alatyr branch, Alatyr, Chuvashia, Russian Federation.
3Majorova Olga Nikolaevna, Phd Candidate of Historical Sciences, Associate Professor
4Paravina Marina Nikolaevna, Department of higher mathematics and information technologies, Federal state budgetary educational institution of higher education “Chuvash state University named after I.N. Ulyanov”, Alatyr branch, Alatyr, Chuvashia, Russian Federation.
5Dubrovina Olga Alexandrovna, Department of higher mathematics and information technologies, Federal state budgetary educational institution of higher education “Chuvash state University named after I.N. Ulyanov”, Alatyr branch, Alatyr, Chuvashia, Russian Federation.
Manuscript received on July 20, 2019. | Revised Manuscript received on August 10, 2019. | Manuscript published on August 30, 2019. | PP: 1326-1334 | Volume-8 Issue-6, August 2019. | Retrieval Number: F8520088619/2019©BEIESP | DOI: 10.35940/ijeat.F8520.088619
Open Access | Ethics and Policies | Cite | Mendeley
© The Authors. Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Abstract: For the purpose of building extended surfaces in the long and short wave sections of the wavelength spectrum, it is deemed relevant to know the parameters of electromagnetic compatibility of airborne slot radiator antenna systems operating in the multi-wave receiving mode. One of the efficient research methods is to solve the problem of electromagnetic wave propagation in an infinitely extended slot radiator. The research purpose is to study the electromagnetic compatibility parameters of airborne slot radiator antenna systems operating in the multi-wave receiving mode. The main research methods were the statistical processing of the experimental data of tests in situ and mathematical description of the electromagnetic radar setting, as well as its computer simulation. The main result of the study can be formulated as the development of analytical and software methods for calculating the internal, external and equivalent conductivities of longitudinal and transverse slots on a wide wall of a rectangular waveguide of an antenna system at main frequency harmonics and at frequencies exceeding the main one, with account of slot width. We calculated the radiation characteristics of a slotted-waveguide antenna system at harmonics. The results of the study were used in the development of a universal technique for designing and developing radar systems capable of adequate functioning in the conditions of the electromagnetic setting under consideration. The results of the study will enable a more complete description of the electrodynamic pattern of wave propagation, making it possible to increase their generation and propagation.
Keywords: Electromagnetic compatibility, frequency harmonics, rectangular waveguide, slot antenna systems.