A Development of the Internet of Things based Intruder Detection and Security Alarm System
Akkasit Sittisaman1, Naruepon Panawong2
1Akkasit Sittisaman, Department of Applied Science, Faculty of Science and Technology, Nakhon Sawan Rajabhat University, Nakhon Sawan, Thailand.
2Naruepon Panawong, Department of Applied Science, Faculty of Science and Technology, Nakhon Sawan Rajabhat University, Nakhon Sawan, Thailand.
Manuscript received on July 20, 2019. | Revised Manuscript received on August 10, 2019. | Manuscript published on August 30, 2019. | PP: 2307-2312 | Volume-8 Issue-6, August 2019. | Retrieval Number: F8606088619/2019©BEIESP | DOI: 10.35940/ijeat.F8606.088619
Open Access | Ethics and Policies | Cite | Mendeley
© The Authors. Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Abstract: Intruders usually break into houses with the intention of committing burglaries. This research proposed a development of an intrusion detection and security Alarm System using the Internet of Things. The methodology of the proposed system consists of five components. First, the hardware components are Raspberry Pi 3 Model B+, a camera for Raspberry Pi, motion sensors, relays and speakers, while the software system was developed by Python. Second, the architecture of the proposed system. Third, the design and construction of the electronic circuit connected with sensors. Fourth, the intruder image analysis for the alarm system using OpenCV and Deep Learning. The face detected by the camera was compared with homeowner’s pictures. If the detected face was not the homeowner, the system alarms the user or the owner via the smartphone LINE Application. Last, the Anto, which is the free and easy Internet of Things platform, connect the devices and the smartphone application together via the internet. Hence, the users or homeowners can control the devices or take the picture from a distance using a smartphone. The experimental results show that the proposed system can detect the intruder and alarm the homeowner via LINE Application on the smartphone. The experimental results show that the proposed system can efficiently detect the intruder and alarm the homeowner via LINE Application on the smartphone. The performance of the proposed system is excellent with the average score of 97.40%. The developed application on the Android smartphone is user-friendly, simple and efficient as well.
Keywords: Alarm System, Anto, Internet of Things, OpenCV, Raspberry Pi.