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Abstract- In this paper the effect of middle web member on 

torsional-distortional deformations of a double cell mono 

symmetric box girder structure is examined. First, the 

torsional and distortional deformations of a single cell 

mono symmetric box girder structure were examined using 

a single span, simply supported bridge structure on the 

bases of Vlasov’s theory. By introducing a middle (vertical) 

web member on the single cell mono symmetric box girder 

section a double cell mono symmetric box girder structure 

of the same overall cross sectional dimensions was 

obtained. The torsional and distortional deformations of the 

double cell cross sectional profile were also evaluated and 

compared with those of the mono symmetric cross sectional 

profile. Results show that the introduction of the middle 

web member to obtain the double cell mono symmetric box 

girder structure reduced the distortional deformation by 

118% and increased the torsional deformation by 14% 

 

Keywords:- box girder, distortion, mono symmetric, thin-

walled, torsion, Vlasov’s theory. 

 

I. INTRODUCTION 
     Basically, a curved structural element has two 

interacting forces: bending and torsion. Knowledge of 

this interaction leads to a successful design of the 

element. The study of curved elements offers only one 

instance where torsional and bending forces 

simultaneously occur. In other instances, e.g., straight 

girders (in either bridges or buildings) may develop 

such forces and thus require appropriate analysis and 

design. This situation arises where the load is eccentric 

with respect to the girder axis or shear centre. The 

engineer is then forced to determine the shear centre, 

resolve the forces into appropriate bending and 

torsional forces and then determine the stresses and 

deformations. 
      
 

 

Manuscript published on 30 April 2012. 
* Correspondence Author (s) 

N.N. Osadebe,  Dept of Civil Engineering, University of Nigeria, 

Nsukka, Nigeria, Phone: +25408037754837, Email: 

nkemuamaka@yahoo.com 

C.A. Chidolue,  Dept of Civil Engineering,  Nnamdi Azikiwe 

University, Awka, Anambra State, Nigeria., Phone: 

+25408063418523, Email: chidoluealfred@gmail.com  

 

 

© The Authors. Published by Blue Eyes Intelligence Engineering and 

Sciences Publication (BEIESP). This is an open access article under 

the CC-BY-NC-ND license http://creativecommons.org/licenses/by-

nc-nd/4.0/ 

 

The torsional response of structural elements can be 

classified into two categories: pure torsion and warping    

torsion or bimoment. Most structural engineers are 

familiar with the concept of pure torsion as this type of  

torsion is studied in strength of materials courses. The 

second type of torsion, warping torsion and distortion 

are probably new terms and phenomena which need to 

be fully investigated in order to avoid their undesired 

effects, particularly on box girder structures. 

The general theories described by Heins [1] relative to 

straight and curved girders assume thin walled sections 

which may be open or closed (box section). 

Development of general equations was based on 

prismatic girders (solid beams). Their solution then 

permits a proper engineering examination of box girder 

elements when subjected to vertical torsional loads. 

     The application of cross sectional deformation 

equations formulated by Vlasov [2] and Dabrowski [3], 

modified by Varbanov [4], has opened a new way to 

analyze the torsional and distortional effects of loads 

on such girders. The purpose of this work is to examine 

the effect of introducing a middle (vertical) web 

member on the torsional and distortional  deformations 

of a mono symmetric box girder  section. 

 

II.  REVIEW OF PAST WORK 

      The curvilinear nature of box girder bridges along 

with their complex deformation patterns and stress 

fields have led designers to adopt approximate and 

conservative methods for their analysis and design. 

Recent literatures, Hsu et al [5], Fan and Helwig [6], 

Sennah and Kennedy [7], on straight and curved box 

girder bridges deal with analytical formulations to 

better understand the behaviour of these complex 

structural systems. Few authors, Okil and El-tawil [8], 

Sennah and Kennedy [7], have undertaken 

experimental studies to investigate the accuracy of 

existing methods. Before the advent of Vlasov’s theory 

of thin-walled beams[2]  the conventional method of 

predicting warping and distortional stresses is by beam 

on elastic foundation (BEF) analogy. This analogy 

ignores the effect of shear 

deformations and takes  
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no account of the cross sectional deformations which 

are likely to occur in a thin walled box girder structure 

     Several investigators; Bazant and El-Nimeiri [9], 

Zhang and Lyons [10], Boswell and Zhang [11], Usuki 

[12], Waldron [13], Paavola [14], Razaqpur and Lui  

[15], Fu and Hsu [16], Tesar [17], have combined thin-

walled beam theory of Vlasov and the finite element 

technique to develop a thin walled box element for 

elastic analysis of straight and curved cellular bridges.  

      Various theories were postulated by different 

authors examining methods of analysis, both classical 

and numerical. A few others however carried out tests 

on prototype models to verify the authenticity of the 

theories. At the end of it all, it was concluded that 

Vlasov’s theory captures all peculiarities of cross 

sectional deformation such as warping, torsion, 

distortion etc, and is therefore adopted in this work. 

 

III.  VLASOV’S  STRESS – STRAIN RELATIONS 

      The longitudinal warping and transverse 

(distortional) displacements given by Vlasov [2] are:  

( , ) ( ) ( )u x s U x s= ;   ( , ) ( ) ( )v x s V x s=       (1) 

These displacements may be represented in series form 

as:       

1

1

( , ) ( ) ( )

( , ) ( ) ( )
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i i

i
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k k

k

u x s U x s

v x s V x s
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
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                                       (2) 

where, Ui(x) and Vk(x) are unknown functions which 

express the laws governing the variation of the 

displacements along the length of the space 

frame.i(s) and ( )k s  are elementary displacements 

of the strip frame, respectively out of the plane (m 

displacements) and in the plane (n displacements). 

These displacements are chosen among all 

displacements possible, and are called the generalized 

strain coordinates of a strip frame. 

      From the theory of elasticity the strains in the 

longitudinal and transverse directions are given by; 
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The expression for shear strain is  ( , )
u v

x s
s x


 

= +
 

 

or     

 ( ), '( ) ( ) ( ) '( )
1 1

m n
x s s U x s V xi i k ki k

  = + 
= =

    (4)     

Using the above displacement fields and basic stress-

strain relationships of the theory of elasticity the 

expressions for normal and shear stresses become,  
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     (6)                                           

Transverse bending moment generated in the box 

structure due to distortion is given by 

( )
1

, ( ) ( )
n

k k

k

M x s M s V x
=

=                                   (7)                                                                                                       

where Mk(s) = bending moment generated in the cross 

sectional frame of unit with due to a unit distortion, 

V(x) = 1 

 

IV. ENERGY FORMULATION OF THE 

EQUILIBRIUM EQUATIONS 

 The potential energy of the box structure under the 

action of a distortional load of intensity q is given by:  

            EU W = +                                                  (8) 

where,                                                                                           

  = the total potential energy of the box structure, 

U = Strain energy, 

EW  = External potential or work done by the external 

loads. 

     From strength of material, the strain energy of a 

structure is given by 

 

( )2 2( , ) / ( , ) /
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( , ) / ( , )

( )1
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t s
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 (9)                                                                     

Work done by external load is given by 

( , )EW qv x s dxds=  

( ) ( )h h

s x

q V x s dsdx=    

= h h

x

q V dx                                                       (10) 

 Substituting  (9) and (10) into (8) we obtain, 
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                                                                                  (11)                                            

 where, 

( , )x s = Normal stress 

( , )x s = Shear stress 
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( , )M x s = Transverse distortional bending moment 

q = Line load per unit area applied in the plane of the 

plate  
3 2

( ) ( ) /12(1 )sI t s = − = Moment of inertia of plate                                                                                        

E = Modulus of elasticity 

G = Shear modulus 

  = poisson ratio 

t = thickness of plate 

     Substituting (1), (5), (6), and (7)  into (11), noting 

that ( )t s ds dA= , we obtain the potential energy of 

the box structure, after simplification, as follows. 

 '( ) '( )
2

ij i j

E
a U x U x dx = +  

+ ( ) ( ) ( ) '( )
2

ij i j kj k j

G
b U x U x c U x V x dx +    
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2
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G
c U x V x r V x V x dx+  + 

+ ( ) ( )
2

hk k h

E
s V x V x dx - h hq V dx                  (12)                                                                                                                               

where the (Vlasov’s) coefficients are defined as 

follows: 

 ij ji i ja = a = (s) (s)dA                       (a) 

' '( ) ( )ij ji i jb b s s dA = =                       (b) 

' ( ) ( )kj jk k jc c s s dA = =                    (c) 

'( ) ( )ih hi i kc c s s dA = =                      (d)         (13) 

( ) ( ) ;kh hk k hr r s s dA = =                   (e) 

( )

( ) ( )1 k h
kh hk

s

M s M s
s s ds

E EI
= =           (f)  

h hq q ds=                                        (g)                                                                              

The governing equations of torsional-distortional 

equilibrium are obtained by minimizing the energy 

functional (12), with respect to its functional variables 

u(x) and v(x) using Euler Lagrange technique, Elgolts 

[18]. Minimizing with respect to u(x) we obtain: 

1 1 1
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Minimizing with respect to v(x) we have: 
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          (15)                                                 

where                 / 2(1 )E G = = +                        

Equations (14) and (15) are Vlasov’s generalized 

differential equations of distortional equilibrium for a 

box girder. They  are presented in matrix form as 

follows: 
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V. GENERATION OF STRAIN MODES AND 

EVALUATION OF VLASOV’S COEFFICIENTS 

      Vlasov’s coefficients of differential equations of 

equilibrium (13), which involve a combination of 

elementary displacements and their derivatives may be 

obtained by consideration of the box girder cross 

sections, Figs. 1(a) and 2(a), as strip frames.  

     The single cell mono-symmetric strip frame in Fig. 

1(a) has four degrees of freedom in the longitudinal 

direction and four in the transverse direction. From (2), 

where in this case m = 4 and n = 4, it follows that we 

have  sixteen displacement quantities to compute and 

hence, sixteen differential equations of distortional 

equilibrium will be required. For multi-celled profiles 

the number of degrees of freedom will increase and so 

will the number of differential equations require to 

solve for the displacement quantities, and this can be 

quite cumbersome. The application of Vlasovs 

generalized strain modes as modified by Varbanov [4], 

reduces the number of displacement quantities and 

hence the differential equations  of equilibrium 

required to solve for them to seven, irrespective of the 

number of degrees of freedom possessed by the 

structure.  

   In the generalized strain modes, there are three strain 

fields in the longitudinal direction, 

 

 

 

 

http://www.ijeat.org/


 

Response of Double Cell Mono Symmetric Box Girder Structure to Torsional-Distortional Deformations 

288 

 

 

Published By: 

Blue Eyes Intelligence Engineering  

and Sciences Publication (BEIESP)  

© Copyright: All rights reserved. 

Retrieval Number D0358041412/12©BEIESP 

Journal Website: www.ijeat.org 

 
1 2,  , and 3 . Thus, from  (2) we have, 

   

1 1 2 2 3 3( , ) ( ) ( ) ( ) ( ) ( ) ( )u x s U x s U x s U x s  = + +

or 

3

1

( , ) ( ) ( )i i

i

u x s U x s
=

=         (17)                                                                                                       

In the transverse direction, four strain modes are also 

recognized; 
1 2 3, ,   , and 4 . From  (2) we 

have: 

       

1 1 2 2 3 3

4 4
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v x s V x s V x s V x s

V x s

  
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= + + +

+
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4

1

( , ) ( ) ( )k k

k

v x s V x s
=

=        (18)                                                                                     

where  1 = out of plane displacement parameter when 

the load is acting (vertically)  normal to the top flange 

of the girder, i.e., bending is about horizontal axis. 

2  = Out of plane displacement parameter when the 

load is acting tangential to the plane of the flanges, i.e., 

bending is about vertical axis. 

3  = Out of plane displacement parameter due to 

distortion of the cross section, i.e., the warping 

function .  

1  = In-plane displacement parameter due to the load 

giving rise to  1  

 2  = In-plane displacement parameter due to the load 

giving rise to 2  

3  = In-plane displacement parameter due to the 

distortion of the cross section, i.e., non uniform torsion. 

4  = In-plane displacement function due to pure 

rotation or  Saint Venant torsion of the cross section. 

 

VI. STRAIN MODE DIAGRAMS 

The procedure for obtaining  the strain mode diagrams 

for mono symmetric cross sections is given in 

literatures, Osadebe and Chidolue [20], Rekach [21] 

     Fig. 1(b) shows a double cell mono symmetric box 

girder frame used for numerical analysis. The frame is 

obtained by introducing a vertical web member on the 

centre line  of the frame in  Fig. 1(a). Thus, the over all 

cross sectional dimensions of the single cell section 

and double cell section are the same. Fig. 2(a) to 2(g) 

show the strain mode diagrams for the double cell 

mono symmetric box girder structure. The coefficients 

, , ,ij ij kj iha b c c , and khr  of the governing equations 

of equilibrium (14) and (15),  are computed with the 

aid of Morh’s integral chart using the strain mode 

diagrams. The summary of the coefficients  for double 

cell mono symmetric box girder frame are on Table I. 

     In our paper, Osadebe and Chidolue [20], the strain 

mode diagrams and Vlasov’s coefficients for the single 

cell mono symmetric frame in Fig. 1(a) are given. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Longitudinal strain mode diagram      
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1.16 

c 

+ 

+ + + 

- - - 1 2 

3 4 

5 6 

y 

z 

1.16 

1.889 

- - - 
- 

1.889 

(b)  Transverse stain mode in y-y direction  

0.857 

0.857 

+ 
+ 

+ 

0.857 1.00 

y 

z 

 
'
1 1
 =  

3.66 

3050 

2745 2745 1830 1830 

915 915 3660 3660 

203 

203 

203 

(a) Single cell box girder section 
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(b) Double cell  box girder section 

Fig.1 Mono symmetric box girder frames 
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VII. EVALUATION OF DISTORTIONAL 

BENDING MOMENT COEFFICIENTS Shk 

     The distortional bending moments coefficients  

hks , given by  (13f) depend on the bending 

deformation of the strip frame characterized by the 

bending moment, M
k

(for k = 1, 2, 3, 4). To compute 

the coefficients we need to construct the diagram of the 

bending moments due to strain modes, 

, ,
1 2 3 4

and   ,     ,.  

 

 

 

 

 

Table I: Summary of Vlasov’s coefficients for the double cell mono 

symmetric frame 
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Fig. 2 Generalized strain modes for double 

       cell mono-symmetric box girder frame 
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Incidentally, 
1

 , 
2

 and 
4

  strain modes do not 

generate distortional bending moments on box girder 

structures as they involve pure bending and pure 

rotation. Only 
3

  strain mode generates distortional 

bending moment which can be evaluated using the 

distortion diagram for the relevant cross section. 

Consequently the relevant expression for the 

coefficient becomes: 

 
( ) ( )1 3 3

M s M s
s s
hk kh sE EIs

= =                                (19)                                              

where ( )
3

M s  is the distortional bending moment of 

the relevant cross section due to strain mode 3. 

     The procedure for evaluation of distortional bending 

moments is given in literatures [20], [21]. Fig.3 shows 

the distortional bending moment  for evaluation of Shk 

for double cell mono symmetric frame of  Fig. 1(b) 
using (19) and Morh’s integral for diagram 

multiplication. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIII. EQUATIONS OF EQUILIBRIUM FOR 

MONO SYMMETRIC CROSS SECTIONAL 

PROFILES 

    The relevant coefficients for torsional-distortional 

equilibrium (strain modes 3 and 4),    are  a33,  b33,  c33, 

c34,  r33, r34, r44 and s33.  Substituting these into (16a) and 

(16b) and multiplying out we obtain; 

''- - '- ' 0
33 3 33 3 33 3 34 4

ka U b U c V c V =          (20)                                                                                           

3'- '' '' -
33 3 33 3 33 3 34 4

q
c U ks V r V r V

G
+ + =   (21)                                                                                       

4' '' '' -
43 3 43 3 44 4

q
c U r V r V

G
+ + =           (22)                                                                                                    

Simplifying further we obtain the coupled differential 

equations of torsional-distortional equilibrium for 

mono symmetric sections as follows: 

''-
1 4 1 3 1

- ''
3 2 4 2 4 2

V V K

iv iv
V V V K

 

 

=

+ =
            (23)                                                                                                     

where,  44 ,
2

43

r

c
 =  -

1 34 43 33 44
r c c r =  (24a)          

-
33 44 34 43 ,

2
33 43

b r c c

ka c
 =  

1 43 33
c ks =   (24b)   

34 -
1 33 43

qq
K c c

G G
= ;  33 4

2
33 43

b q
K

ka c G
=
 
  
 

    (24c)                                            

                                           

 

 

IV. TORSIONAL-DISTORTIONAL ANALYSIS 

OF MONO SYMMETRIC PROFILES 

     In this section the solutions of the differential 

equations of equilibrium (23),  are obtained for a 

simply supported, double  cell mono symmetric box 

girder frame, Fig.1(b), and compared with the results of 

the analysis of a simply supported, single cell mono 

symmetric box girder structure Fig. 1(b), obtained by 

the authors (20). Live loads were considered according 

to AASHTO-LRFD following the HL-93 loading [21]. 

Uniform lane load of 9.3N/mm distributed over a 3m 

width plus tandem load of two 110 KN axles. The 

loads were positioned at the outermost possible 

location to generate the maximum torsional effects. A 

50m span, simply supported bridge deck structure was 

considered. The torsional loads obtained are as follows: 

* *
3 4

157.16 , 1446.505
3 4

b b
t t

q q KN q q KN= == =

where tb  is the width of the top flange.  

 The governing equations of equilibrium are given by 

(23).  

                                                                                                          

A. Single Cell Mono Symmetric Section 

The torsional-distortional differential equations of 

equilibrium obtained [20] for the single cell mono 

symmetric section are: 

-6
2.371 27.405 -18.963 '' 2.120 *10

3 4 4

-4 -4
-18.964 - 5.503*10 1.9163*10

4 3

iv iv
V V V

iv
V V

+ =

=

 (25)                                                           

 

 

 

 

Fig. 3 : Bending moment due to distortion 

of double cell mono-symmetric section 
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Integrating by method of trigonometric series with 

accelerated convergence we have 

-2
( ) 3.268 *10 ( / 50)

3

-3
( ) 2.80 *10 ( / 50)

4

V x Sin x

V x Sin x





=

=

                         (26) 

                                                                                                      

B. Double Cell Mono Symmetric Section 

The relevant coefficients from Table I are, 

0.750; 1.533
33 33 33 33

a b c r= = = =  

1.295; 14.485
34 43 34 43 44

c c r r r= = = = =   

-4 -4
0.723* 6.9712 *10 5.04 *10

33
s = =  

The parameters  for the governing equations are, 

27.160
2 33 44

ka r = =  

- -20.528
1 34 43 33 44

r c c r = =  

- 20.528
2 33 44 34 43

b r c c = =  

-3
1.632 *10

1 43 33
c ks = =  

-43 4- 2.613*10
1 43 33

q q
K c C

G G
= + =  

-44 2.87845*10
2 33

q
K b

G
= =  

9 2
9.60 *10 /G N mm=  

     Substituting these parameters into (23 ) we obtain: 

(27)

4
2.428 27.16 20.528 '' 2.87845*10

3 4 4

3 4
20.528 1.632 *10 2.613*10

4 3

iv iv
V V V

iv
V V

−
+ − =

− −
− + =

 

Integrating by method of trigonometric series with 

accelerated convergence we have 

-2
( ) 1.500 *10 ( / 50)

3

-3
( ) 3.526 *10 ( / 50)

4

V x Sin x

V x Sin x





=

=

                         (28) 

                                 

C. Discussion of Results 

    Fig.4 shows the variation of torsional and 

distortional displacements along the length of the  

single cell mono symmetric box girder as expressed by 

(28). Fig.5 shows the variation  of torsional and 

distortional displacements along the length of the box 

girder for double cell mono symmetric profile as 

expressed by (29). From these figures, we observed 

that distortional deformations are consistently higher 

than torsional deformations. The maximum (mid span) 

torsional deformations are 3mm for single cell profile 

and 3.5mm for double cell profile,   while the 

maximum (mid span) deplanation  are 33mm for single 

cell and 15 mm for double cell. 

    We  expected that double  cell mono symmetric 

profile would offer greater resistance to  torsional and 

distortional deformations than single cell mono 

symmetric profiles because of increase in the rigidity 

of the double cell structure. While this expectation was 

realized in the case of distortional deformation it was 

not so in the case of torsional deformation. This may be 

attributed to the effect of the interaction between 

torsional strain mode and distortional strain mode 

which resulted to the coupling of the differential 

equations of torsional-distortional equilibrium (23). 

    The effect of middle member (web) in double cell 

mono symmetric cross section was 120% decrease in 

distortional deformation  and 14% increase in the 

torsional deformation. 

 

                                                                               

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

Distance Along the Length of the Girder (m)

D
is

pl
ac

em
en

t (
m

m
)

Distortional displacement

Torsional displacement

                                                                                                         

ig.4 Variation of torsional and distortional displacements along the 

length of the girder (Single cell mono symmetric section) 
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Fig.5 Variation of torsional and distortional displacements along the length of the girder (Double cell 

mono symmetric section) 

 

 

D. Conclusion 

Generally, the distortional deformation was found 

to be four to twelve times higher than the torsional 

deformation. The introduction of the middle 

(vertical) web member in the double cell mono 

symmetric box girder structure reduced the 

distortional deformation by 120% and increased the 

torsional deformation by 14%. Thus, use of multi-

cell profiles can be a good substitute for use of 

diaphragms and internal bracings in mono-

symmetric box girder structures. 
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