
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-2 Issue-5, June 2013

 517

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number E1762062513/13©BEIESP

www.ijeat.orgJournal Website:

Efficientand Quick Algorithm for Processor

Allocation in Mesh Multi-Computers Network
Rahmat Zolfaghari

**

Abstract -Until now, several continuous and discontinuous

techniques have been given for processor allocation in mesh multi-

computers networks. Continuous allocation methods always try to

allocate a free continuous sub-mesh with the same requested

dimensional structure to the parallel input job. For this reason, it

produces the internal fragmentation in the processors network.

Discontinuous allocation algorithms were produced with the aim of

removing processors fragmentation. In discontinuous allocation

algorithms, message interference between different jobs and

struggle to get communication resources increases network

communication overheads due to the increase in path length passed

by the message. This communication overhead is highly dependent

on to the manner of free sub-meshes allocation and the manner of

recording by the algorithm. my paper, a discontinuous allocation

algorithm called Quick Non-Contiguous Allocation (QNA) has

been presented for a two-dimensional mesh network with C

programming language. The efficiency of this algorithm and

continuous and discontinuous allocation algorithms is determined

and compared via simulator tool ProcSimity . Simulation results

indicate improved performance parameters in the given algorithm.

Keywords: multi-computers network, allocation processor,

fragmentation, continuous and discontinuous algorithms

I. INTRODUCTION

For optimal use of the computing power of a large

multicomputer network, having a processor allocation

algorithm and an efficient job schedule is very vital. Processor

allocation is responsible for selecting a set of processors in

order to run parallel work on them, while job schedule is

responsible for determination of executing works. Job

Schedule selects the next job for execution based on stated

policy and then the processor allocation algorithm finds the

free processors for the selected work. If input job cannot be

executed upon the arrival due to lack of processor and or other

jobs, it will be transferred to the waiting line. When some

processors are allocated to a job, this job keeps the processors

with itself until completion of work. After completion, job is

gone out the system and the processors become free for other

tasks. Most of the continuous and discontinuous allocation

algorithms have been designed for two-dimensional mesh

network. Mesh network has been the most favorite network

among other networks for implementation of parallel

computers with distributed memory due to simplicity,

scalability, regularity and easy implementation and has been

used in several machines such as: iWARP [9], IBMBlueGene /

L [1,3] and DeltaTouchstone [6].

Manuscript published on 30 June 2013.

* Correspondence Author (s)
Rahmat Zolfaghari, Islamic Azad University, Hashtgerd Branch,

Department of Computer Engineering, Tehran, Iran

© The Authors. Published by Blue Eyes Intelligence Engineering and

Sciences Publication (BEIESP). This is an open access article under

the CC-BY-NC-ND license http://creativecommons.org/licenses/by-

nc-nd/4.0/

Minimization of allocation time in Grid multi-computers is a

fundamental issue because the main purpose of parallel

execution is to minimize the total time that a job spends upon

the entry to the exit moment in the system. With increase in

system size, time for finding sub-meshes for the allocation to

input job may be equal to the job execution time. Hence,

development of strategies for minimizing search time (which

is also called time allocation) is very important. Methods of

processor allocation can be divided into two general

categories: continuous and discontinuous. In continuous

allocation methods, a set of free continuous processors

available in the network is allocated to execute the input job.

Allocation method (as shown in [10]) results in high

fragmentation. Excessive fragmentation degrades performance

parameters of the system. In order to resolve the fragmentation

that occurred in the continuous allocation, discontinuous

allocation methods were proposed [2, 7, 8, 13, and 14].

Discontinuous allocation is able to execute a job on several

sub-meshes smaller than that the input job has requested and

will not wait to release a continuous sub-mesh. Although a

discontinuous allocation increases conflicts between messages

in the system, it increases processors utilization in using the

system processors and reduces the problem of fragmentation

.Method of allocation operations has a direct impact on

algorithm performance in discontinuous allocation algorithms.

It should be noted that, processors fragmentation operation

must be conducted in a way that the processors allocated to a

job have necessary continuity because this continuity has a

crucial role in decreasing communication overhead and

maintains useful efficiency of system resources. For those

discontinuous allocation algorithms presented for two-

dimensional meshes, it should be mentioned that processor

allocation operation is not conducted based on continuous free

sub-meshes available in the network but it has been used

predefined local models or mathematical that reduce the

efficiency of these algorithms. A discontinuous allocation

algorithm that is called quick non-contiguous allocation

algorithm (QNA) has been proposed for a two-dimensional

mesh network.

QNA algorithm combines the advantages of both continuous

and discontinuous allocation methods. For example, the

advantage of continuous allocation is to eliminate the

communication overhead between processors assigned to a job

that is also deeply considered in this algorithm. This algorithm

has the capability of complete detection and reduction of

allocation overhead. This quality is achieved by maintaining

the maximum continuity between the processors assigned to a

job. QNA algorithm is capable to be applied in both two- and

three-dimensional mesh multi-computers networks.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Efficientand Quick Algorithm for Processor Allocation in Mesh Multi-Computers Network

 518

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number E1762062513/13©BEIESP

www.ijeat.orgJournal Website:

In this paper, QNA algorithm performance has been compared

using simulations with discontinuous allocation algorithms

known as Paging (0) and MBS. These two algorithms have

been selected because of the best performance among other

algorithms [8]. QNA algorithm has been compared to FF

continuous algorithm (that has been used in previous studies)

in order to show superiority of discontinuous allocation to

continuous allocation with respect to the problem of

fragmentation in continuous allocation. At first, previous

studies related to the processor allocation algorithms in mesh

networks will be reviewed. In review of literature, studies

conducted on improvement in efficiency of allocation

algorithms will be investigated and the manner of these

algorithms performances will be summarized. In part 3, QNA

discontinuous allocation algorithm will be described and the

manner of allocation this algorithm will be exemplified. In

Section 4, QNA algorithm and implemented continuous and

discontinuous allocation algorithms have been compared from

the viewpoint of several important parameters in performance.

And finally, results of the previous studies are discussed.

II. REVIEW OF LITERATURE

Definitions and methods of continuous and discontinuous

allocation used for multi-computers mesh networks have been

reviewed in this section.

2-1 Definitions

A two-dimensional mesh M (w, h) is a rectangle of nodes with

dimensions of w × h where w is width and h is the height of

the rectangle. Each node of mesh is a processor that is known

with the address of its characteristics. A node in column and

row b has the coordinate of 〈𝒂, 𝒃〉where 𝟎 ≤ 𝐚 < 𝒘 and𝟎 ≤
𝐛 < 𝒉. Node 〈𝑖, 𝑗〉that is not in borderlines of mesh

approximates and connects directly with other four nodes:〈𝑖 ±
1, 𝑗〉 and〈𝑖, 𝑗 ± 1〉 so that0 < 𝑖 < 𝑤 − 1 and0 < 𝑗 < ℎ − 1. In

borderlines, each node approximates and connects to other two

or three nodes according to its situation.

Definition 2-1- 1:two-dimensional sub-mesh S (a, b) in the

mesh M (w, h) is a subnet M (a, b) that 0 ≤ 𝑎 ≤ 𝑤 and 0 ≤
𝑏 ≤ ℎ . When a job requests a sub-mesh with dimensions𝑎 ×
𝑏, this job is expressed via T (a, b). Address for sub-mesh S is

known by its end and base node that is a four-parameters

variable as〈𝑥, 𝑦, 𝑥′, 𝑦′〉 where,< 𝑥, 𝑦 > shows the lower left

corner and 〈𝑥′, 𝑦′〉 shows the upper right corner of sub-mesh

S. it is clear that𝑎 = 𝑥′ − 𝑥 + 1 and 𝑏 = 𝑦′ − 𝑦 + 1 and base

node of sub-mesh, is 〈𝑥, 𝑦〉 and the sub-mesh area is the

number of nodes inside it that is equal to 𝑎 ×b.

Definition 2-1-2:Busy sub-mesh 𝛽 is a sub-mesh that all its

nodes are assigned to a job at that moment. A set of busy sub-

meshes B is the set that set includes all the busy sub-meshes

available in the network that is called busy list. For example,

in figure (1), three busy sub-meshes exist in network M (6, 6);

therefore, 𝐵 = {𝛽1, 𝛽2, 𝛽3} where𝛽1 = 〈0,0,1,2〉, 𝛽3 =
〈4,3,5,5〉, 𝛽2 = 〈2,0,3,1〉are the members of this set.

Definition2-1-3:Coverage sub-mesh for busy sub-mesh𝛽 is

expressed according to the input T that is a sub-mesh that

none of its nodes can be selected as the basis node of a free

sub-mesh for allocation to job T with respect to busy sub-

mesh𝜗β,T. Coverage sub-mesh 𝜗β,T is equal to 〈𝑥𝑐 , 𝑦𝑐 , 𝑥′, 𝑦′〉for

𝛽〈𝑥, 𝑦, 𝑥′, 𝑦′〉and the job 𝛽where, 𝑦𝑐 = max (0, 𝑦 − 𝑏 + 1)

and 𝑥𝑐 = max (0, 𝑥 − 𝑎 + 1). A according to the input job T,

coverage set ∁T is a collection of coverage sub-meshes for the

job T where, ∁T= {ϑβ,T|β ∈ B}. For example, for the input job

T (3, 2) in figure (1), we have: 𝜗𝛽1,𝑇 = 〈0,0,1,2〉 ، 𝜗𝛽2,𝑇 =

〈0,0,3,1〉 ،𝜗𝛽3,𝑇 = 〈2,2,5,5〉 ،

 ∁T= {〈2,2,5,5〉, 〈0,0,3,1〉, 〈0,0,1,2〉}

Definition2-1-4:According to the input job T, reject𝛿𝑇 sub-

mesh is a sub-mesh including some processors that is a sub-

mesh that none of its processors can be regarded as the basis

node of a free sub-mesh for allocation to job T with respect to

its dimensions. There are two reject sub-meshes for each T:

horizontal(𝛿𝑇𝐻) and(𝛿𝑇𝑉) vertical. It is simple to calculate

them i.e. 𝛿𝑇𝑉 = 〈𝑎′, 0, 𝑤, ℎ〉 and 𝛿𝑇𝐻 = 〈0, 𝑏′, 𝑤, ℎ〉 and𝑎′ =
𝑤 − 𝑎 + 1 𝑎𝑛𝑑 𝑏′ = ℎ − 𝑏 + 1 where, 𝑤 × ℎ is sub-mesh

size. A set of reject sub-meshes ∆𝑇 is calculated by

adding𝛿𝑇𝐻and 𝛿𝑇𝑉. For example, 𝛿𝑇𝐻 = 〈0,5,5,5〉and 𝛿𝑇𝑉 =
〈4,0,5,5〉 in figure (1).

(0,0)

(3,1) (5,1)

(5,0)(4,0)(2,0)(1,0) (3,0)

(4,2)(3,2)

(4,1)

(4,3)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2) (5,2)

(0,5) (1,5) (2,5) (3,5) (5,5)(4,5)

(0,4) (1,4) (2,4) (3,4) (4,4) (5,4)

(5,3)(0,3) (1,3) (2,3) (3,3)

Busy Submesh

Coverage Submesh

Reject Submesh

Figure 1 – An example of allocation for T (3, 2)

2-2 Continuous allocation methods

Continuous allocation has been proposed for mesh multi-

computers networks. Most previous studies have been focused

on reducing the negative effects of fragmentation of

processors on the system efficiency due to the continuous

allocation. Some known solutions will be described below.

First-Fit/ Best-Fit (FF / BF)

First-Fit/ Best-Fit algorithms [10] were proposed to improve

the efficiency of the sliding frame. First-Fit algorithm is

implementable on the sub-mesh with any size as sliding frame

and can allocate a sub-mesh with the requested size correctly.

This algorithm keeps bit map of the status of mesh free and

allocated nodes in the array called busy array and according to

the job given for allocation, look for busy array algorithm for

creating an array called coverage array. Coverage array has

been produced by scanning all busy arrays from left to right

and top to bottom and returns the address of the first free node

found in coverage array as a base node for allocation. Best-Fit

method is similar to First-Fit but it returns a node as a job

basis node where its sub-mesh has the most allocated

neighbors. The simulation results show that First-Fit method is

better than Best-Fit [10]. In First-Fit/ Best-Fit, whole mesh

must be scanned to find the base node. Therefore, it is the time

complexity of algorithm O (N) where N is the number of

processors.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-2 Issue-5, June 2013

 519

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number E1762062513/13©BEIESP

www.ijeat.orgJournal Website:

First-Fit method has not a complete diagnosis. Another

drawback of this algorithm is high overhead due to the array

manipulation that decreases the popularity of this algorithm,

especially in the large meshes.

2.3Discontinuous allocation methods

With the developments in routing techniques such as

wormhole switching, delayed communication had a fewer

sensitivity to distances between nodes. These developments

led to a more acceptable form of discontinuous allocation in

networks with large diameters such as mesh. in a case of

sufficient processors for allocation, discontinuous allocation

does not seek for data execution and necessarily a continuous

pattern. Some discontinuous allocation methods will be

examined here .

Paging allocation

Paging allocation method [8] divides the whole mesh into

pages that are sub-meshes with equal sizes and in length

2𝑠𝑖𝑧𝑒_𝑖𝑛𝑑𝑒𝑥 is larger than or is equal to zero. A page is regarded

as an allocation unit. To determine the type of navigation,

pages are identified by the same index. Page sizes are

expressed bypaging(size index). For example, Paging (2)

means the pages that composed of sub-meshes with

dimensions 4× 4. If a job asks for a sub-mesh with

dimensions𝑎 × 𝑏 , the number of required pages is calculated

by the formula⌈
(𝑎 × 𝑏)

𝑃𝑠𝑖𝑧𝑒⁄ ⌉ where, Psize is the page size.

This algorithm maintains free pages in a list and in a case of

request; it allocates from this list and returns it to the list when

releasing the page. If in a case of size index=0, there is no

fragmentation but there is fragmentation with increase in size

index, time complexity of algorithm is 𝑂(𝑎 × 𝑏).

Multiple Buddy Systems (MBS)

Binary shape of this algorithm is a developed form of [8]. This

method divides mesh network into a square and non-

overlapped sub-meshes with dimensions of 2 spuare. If a job

asks for a processor P, this request is converted to the request

in base 4. In this way, P = dk × (2k × 2k) + ⋯ +

d0 × (20 × 20) so thatd0 … dk ∈ {0,1,2,3}. Algorithm tries to

allocate di × (2i × 2i) according to the available resources. If

some blocks do not exist, the algorithm breaks repeatedly the

larger blocks and converts them to four smaller partners in

order to achieve its intended size.

Four-partners blocks will be(2j × 2j) and four blocks will

be(2j−1 × 2j−1) . In a case of sufficient processors, algorithm

is always successful because the smallest part that can be

allocated is block1 × 1 . Consequently, there will be no

fragmentation. Time complexity of this algorithm is O (N)

where N is the number of processors in system.

III. QUICK NON-CONTINUOUS ALLOCATIONS

Method of quick algorithm

Suppose that the input job T (3, 2) has been given to the

system and we can do the allocation by use of QNA algorithm.

It is clear form figure (1) that busy sub-meshes include𝜷𝟐 =
〈𝟐, 𝟎, 𝟑, 𝟏〉 , 𝜷𝟏 = 〈𝟎, 𝟎, 𝟏, 𝟐〉and𝜷𝟑 = 〈𝟒, 𝟑, 𝟓, 𝟓〉 that were

allocated in mesh network M (6, 6).

According to the busy sub-meshes and the input job T, the

coverage sub-meshes will be ∁T=
{〈2,2,5,5〉, 〈0,0,3,1〉, 〈0,0,1,2〉} and the reject horizontal and

vertical areas are

𝜹𝑻𝑯 = 〈𝟎, 𝟓, 𝟓, 𝟓〉 ،𝜹𝑻𝑽 = 〈𝟒, 𝟎, 𝟓, 𝟓〉
The main idea for QNA algorithm is to collect information

from available rows in sub-mesh network via the coverage

sub-meshes made of the busy sub-meshes. From this

information, we can determine in the shortest time whether

there is a node in a row for allocation to the input job T as the

base node. This information is merely obtained by the

comparison of the coverage sub-meshes and the rows and

minimizes the comparisons in search spaces and finally

allocation time and waiting time a great degree.

For algorithm performance, it is necessary to introduce a one-

dimensional array called last-covered, which keeps the very

right node covered in each (x-coordinate) row in the mesh

network. In this article, a set of connected nodes in a row of

mesh net is called a piece that begins from the very left node

in the row (It is usually zero in definitions). If all the nodes in

a piece belong to one of the coverage sub-meshes∁T, then that

piece is called “coverage piece”. In array j of array last

covered[j] where,1 ≤ 𝑗 ≤ 𝑏′ − 1, it keeps x-coordinate of the

last node of coverage piece in the row j. At the beginning,

algorithm calculates reject sub-meshes ∆𝑇 after determination

of the coverage sub-meshes according to the dimensions of the

input job and eliminates it from whole search domain. Then,

we arrange the coverage sub-meshes according to their

coordinate Xc of base node parameters in an ascending form

and then calculate the values of arrays last-covered by the

last-covered function. If there is no coverage piece in the j

row, the value of last-covered[j] will be zero. For example,

the values of last-covered[j] for ∫=0,1,2,3,4 will be (3,3,5,0,0)

respectively.

Procedure Submesh Allocation

{

Step 1.flag←false. /* flag representing the orientation */

Step 2.Job_Size= 𝑎 × 𝑏

Step 3. Decide the orientation of T as follows, and determine

the reject set.

if (flag = false)

thenT ←T(w, h), a' ←a-w + 1, b'←b-h + 1

elseT←T(h, w), a'←a-h + 2, b←b-w + 1

Step 4. Based on current B and T, determine 𝝑𝛃,𝐓 and

Last_covered[j] (1 ≤ j ≤ b′ − 1)← 0

 For each 𝛃〈𝐱, 𝐲, 𝐱′, 𝐲′〉, determine

 𝛝𝛃,𝐓〈𝐱𝐜, 𝐲𝐜, 𝐱′, 𝐲′〉

 Arrange 𝛝𝛃,𝐓 s in the increasing order of 𝐱𝐜

 For each 𝛝𝛃,𝐓 (starting from one whose 𝐱𝐜 is

smallest)

 If (𝐲𝐜<b′)

 For each row j (yc ≤ j ≤ min (y′, b′ − 1))

 If(xc ≤ last_covered[j] + 1 ≤ x′)then

last_covered[j]← x′
Step 5.

j←1

while (j <b' AND last_covered[j] + 1 ≥a') /* no

freesubmesh is found in the j th row */

j←j+ 1

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Efficientand Quick Algorithm for Processor Allocation in Mesh Multi-Computers Network

 520

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number E1762062513/13©BEIESP

www.ijeat.orgJournal Website:

if (j = b') /* no free submesh found in that orientation */

if (flag = false)

then flag←true and go back to Step 3

elsei← (last_covered[j] + 1) and go to Step 6. /*a

freesubmesh is found */

Step 6.

If (flag = false)

thenS ←<i, j, i + w-1, j + h-1>

elseS ←<i, j, i + h-1, j + w-1>

Allocate S to T and add StoB.

Return success

For example, in figure (1) 〈0,0,1,2〉𝛽2 = 〈2,0,3,1〉 , 𝛽1 = and

𝛽3 = 〈4,3,5,5〉 and the input job T=(3 , 2) and b'-1=4, then the

last-covered is calculated as follows:last_covered[j] (j=0,1, 2,

3,4)= 0

By using three coverage sub-meshes 𝜷𝟑 و𝜷𝟐, 𝜷𝟏we get three

sub-meshes 𝝑𝜷𝟏,𝑻 = 〈𝟎, 𝟎, 𝟏, 𝟐〉,𝝑𝜷𝟐,𝑻 =

〈𝟎, 𝟎, 𝟑, 𝟏〉and𝝑𝜷𝟑,𝑻 = 〈𝟐, 𝟐, 𝟓, 𝟓〉 then we arrange them as,

𝝑𝜷𝟏,𝑻,𝝑𝜷𝟐,𝑻and𝝑𝜷𝟑,𝑻.

According to the𝝑𝜷𝟏,𝑻, the values last-covered[j] for j=0, 1, 2

equals 2. For j=0,1 the values of last-covered[j] for 𝛝𝛃𝟑,𝐓

equals to 3 and with the quantity of last-covered [2] is

changed and equals to 5.

Final value for last_covered for 5 element left to right is in

order 0,0,5,3,3 .

As it can be seen, if a node belong to sub-mesh𝛽, it belongs

certainly to sub-mesh∁𝑇. Therefore, for determining the

dependency of a node, we need to examine coverage sub-

meshes. And last-covered has the necessary information in

this regard. By examining the values of this array, we can

determine whether a node exists to allocation to a job. Now,

we have b=5 and a=4 for allocating a node to the job

according to figure (1) and because𝑙𝑎𝑠𝑡_𝑐𝑜𝑣𝑒𝑟𝑒𝑑[𝑗](1 ≤ 𝑗 ≤
3) + 1 ≥ 𝑎′, the result of value j is equal to 4. Then,

because𝑙𝑎𝑠𝑡_𝑐𝑜𝑣𝑒𝑟𝑒𝑑[4] + 1 < 𝑎′, node〈1,4〉 can be

allocated to the job T as a base node. Note that QNA

algorithm is more time-saving in compared to other methods.

ProcedureQNA_Allocate (a,b):

{

Total_Allocated=0

Job_Size= 𝑎 × 𝑏

 Step1. if (number of free processors<Job_Size)

 Return failure.

 Step2. if (there is a free S(x,y) suitable for S(a,b))

 {

Allocateit using Submesh Allocation contiguous

allocation algorithm.

 return success.

 }

Step3. 𝛼 = 𝑎and𝛽 = 𝑏

Step4. Subtract 1 from max (𝛼, 𝛽) if max >1

Step5. if(Total_allocated + (𝑎 × 𝑏) >Job_Size go to step4

Step6. if there is a free S (x,y) suitable for 𝑆(𝑎 × 𝑏)

 {

 allocate it using Submesh Allocation.

 Total_allocated = Total_allocated+ (𝑎 × 𝑏).

 }

Step7. if (Total_allocated = Job_Size)

 return success.

 else

 go to Step4.

}end procedure

In QNA algorithm, when a parallel job is chosen for the

processor allocation, the algorithm begins to search for a mesh

in order to find a suitable sub-mesh for the input job. If the

requested sub-mesh is found, it will be allocated to the job and

the allocation process will be ended. Otherwise, the largest

free sub-mesh which can be placed in S (a, b) will be allocated

to it. Then the algorithm will search for the largest sub-mesh

whose dimensions do not exceed the previous allocated sub-

mesh provided that the number of the allocated processors

does not exceed the quantity 𝒂 × 𝒃 The last phase is repeated

until 𝒂 × 𝒃processors are allocated. For example, take into

account the mesh situation M (6, 6) which is shown in figure

(1) and then suppose that the input job has asked for a sub-

mesh with the dimensions 62. As we see in the figure, there

are no free 𝟔 × 𝟐 sub-meshes. Therefore, QNA algorithm of

the free〈𝟎, 𝟑, 𝟑, 𝟒〉 and〈𝟒, 𝟎, 𝟓, 𝟏〉sub-meshes are allocated to it

as we will explain. First, the algorithm subtracts one unit from

the largest angle of the requested sub-mesh; and the result will

be sub-mesh 𝟓 × 𝟐 which does not exist again. The process of

subtraction goes on until the sub-mesh 𝟒 × 𝟐 is obtained

which does exist. Then, the algorithm while expressing that

the quantity of the processors should not exceed𝟔 × 𝟐, will try

to choose the sub-mesh whose dimensions does not exceed the

previous allocated sub-mesh (𝟒 × 𝟐). In this example,
[(𝟒 × 𝟐) + (𝟒 × 𝟐)] > (𝟔 × 𝟐) consequently, the algorithm

subtracts one unit from the largest angle of the sub-mesh
(𝟒 × 𝟐)and the result of the sub-mesh will be(𝟑 × 𝟐). But

again,[(𝟒 × 𝟐) + (𝟑 × 𝟐)] > (𝟔 × 𝟐), the subtraction goes on

until the summation of the angles of the sub-mesh is less than

the dimensions of the allocated submesh or equals the

intended processors (𝟔 × 𝟐). In this example, (𝟐 × 𝟐)sub-

mesh is obtained which is available in the system. Then, the

sub-mesh〈4,0,5,1〉is allocated to the job and the process is

finished.

IV. THE RESULTS OF SIMULATION

Here, we represent the results of the assimilation of some

contiguous and non-contiguous allocation methods such as

Paging (0), MBSand First-Fit (FF). We perform the algorithm

of the allocation and release of these methods with the C

language, and assimilate it by the assimilation software

ProcSimity which is a tool for assimilating processor

allocation and priority given to the job in multi-computers

systems [9]. The mesh model which is used in assimilation is a

square mesh with the length of L. The way of producing and

entering of jobs are supposed to be of powered distribution

and are serviced in the form of FCFS. The time of doing is

supposed as the form of powered distribution with the average

amount of a time unit. Two kinds of distributions are used for

the way of producing the length and the width of the job. The

first one is the monotonous distribution on [1, L] in which the

length and width of the job are produced

separately.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-2 Issue-5, June 2013

 521

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number E1762062513/13©BEIESP

www.ijeat.orgJournal Website:

The second one is the powered distribution in which the length

and the width of the job are produced in the powered form and

with the average of half of the entire mesh. These distributions

are the ones which are used in most assimilations [2, 9, 10].

Each assimilator is based on a perfect implementation of 1000

jobs. The results of assimilation on a sufficient number of

implementation are averaged. Thus, their reliability is %90

and the error is less than %5. The inter-communication

network uses a crawling procedure and an XY routing.

Sending fleet data between two adjacent nodes takes a time

unit and t1 time unit is spent for finding the route of the fleet

between two nodes. The message length is shown as[𝟏, 𝐋] .

The allocated processors use one of the current

communication models. The first model is the all to one

model. In this model, a processor which is randomly chosen

from a job sends the data packs to all of the processors of that

job. As it has been said in [8, 11, 12], the number of the

messages produced by a given job has a powered distribution

of an average quantity of num-mes. The second

communication model is called the all to all model in which

each allocated processor to a job sends the data packs to all the

processors of that job. This communication model creates

much message communication involvement in the network

and this is the weakness of non-contiguous allocation

algorithms. In both models, the processors allocated to a job in

a linear array are recorded and are numbered by a network row

scanning in the array. The processor assimilator chooses the

starting point and the destination from this array and then

determines the starting point and the destination coordinates

by a record. The system on which the assimilation is done is a
(16 × 16)mesh in which the𝒕𝒔 = 𝟑time unit and the fleet is

𝑷𝒍𝒆𝒏 = 𝟖and the num-mes=5

The parameters chosen for comparison are: the average

turnaround time of jobs, mean waiting time and mean system

utilization. The average turnaround time of job is the time

which a job spends from the entering to the exit time. The

average finishing time of all jobs is the time which is spent for

doing all the entering jobs. The average optimum use of the

system is the percentage of using system processors during the

implementation; and it is estimated as follows:

SystemUtilization = ∑
w × h − ni

(w × h) × t
 (1)

t

i=1

In this formula 𝒏𝐢is the number of free processors of the

system in time i andt is the total spent time, and 𝒘 × 𝒉is the

number of the system processors. System loading is an

independent parameter in the system which has an invert

relation with the mean inter-arrival of jobs and is estimated as

follows:

λ =
N × Te

SystemLoad × P
 (2)

In this formula F is the total number of the processors and the

jobs are entered into the system by the potation distribution

and the rate of the λ in the time unit. N is the average number

of the wanted processors by each job, and 𝑻𝐞 is the average

powered distribution of the implementation time.

The Completion Time of Each Job

In figures (2) and (3) the average completion time of each job

in relation to the system's load for the communicating model

"one to all" is represented. The results have been shown that

QNA has a better performance than the other contiguous and

non-contiguous allocation algorithms with both distribution

models of job size (considered in this article).We should

notice that QNA has a better performance than FF contiguous

allocation for both models of job size distribution. For

example, in figure (2) the algorithm QNA in mean inter-

arrival time of jobs 0,0205 jobs/Time unit has been shown

%65 more efficient in comparison to the FF , and %36 more

efficient in comparison to Paging (U) and %30 more efficient

than the MBS. Using messages longer than (16, 32 and 64

fleets) shows the same results from the efficiency aspect. The

results also have been shown that by extending the length of

packs, discrepancy of the parameters of QNA efficiency in

comparison to other contiguous and non-contiguous

algorithms has been shown more improvment.

Figure (2) – The average completion time of a job according

to the system of loading in the one to all communicating

model with a monotonous distribution of jobdimensions

Figure (3)- The average completion time of a job according to

the system of loading in the one to all communicating model

with the powered distribution of job dimensions

Figure (4)-The average completion time of a job according to

the system of loading in the all to all communicating model

with the monotonous distribution of job dimensions

0

2000

4000

6000

8000

10000

12000

0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026

QNA

FF

Multiple_Buddy

Paging(0,0)

A
ve

ra
 g

e
Tu

rn
ar

o
u

n
d

 T
im

e
System Load

0

1500

3000

4500

6000

7500

9000

10500

0.01 0.02 0.03 0.04 0.05

QNA

FF

Multiple_B
uddy
Paging(0,0)

A
ve

ra
 g

e
Tu

rn
ar

o
u

n
d

 T
im

e

System Load

0

2000

4000

6000

8000

10000

12000

0.01 0.015 0.02 0.025 0.03 0.035 0.04

QNA

FF

Multiple_Bu
ddy

System Load

A
ve

ra
 g

e
Tu

rn
ar

o
u

n
d

 T
im

e

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Efficientand Quick Algorithm for Processor Allocation in Mesh Multi-Computers Network

 522

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number E1762062513/13©BEIESP

www.ijeat.orgJournal Website:

Figure (5)- The average completion time of a job according to

the system of loading in the all to all communicating model

with the powered distribution of job dimensions

In figures (4) and (5) the average completion of each job is

measured in relation to the system load for the "all to all"

communicating model. Again, QNA has been shown a better

performance than the other allocation algorithms for both

models of job size distribution. For example, in figure (4)

when the mean inter-arrival time of jobs is 0, 0305 jobs/unit,

the average completion time of the algorithm QNA is %20,

%24 and %38 of the average completion time of FF, Paging

(U) and MBS methods respectively.

The assimilation also has been shown shows that using

messages longer than 16, 32 and 64 fleets have also the same

results.

Utilization

Figures (6) and (7) have shown the average productivity of

system resources in the allocation algorithms QNA, MBS,

Paging (U) and FF for both communicating models and job

size distribution. The assimilation results in these figures are

obtained in the system's heavy load. The heavy load, i.e. the

waiting line of the system is rapidly filled and causes the

allocation algorithm to reach the highest level of using the

system's resources. For both job size distributions of non-

contiguous allocation algorithms they found an average

productivity quantity of %71 to %76, but the contiguous

method FF could not go beyond %50, and this was because

doing QNA operation by other allocation algorithms for both

of job size distributions showed a better performance. For

example, in figure (4) when the mean inter-arrival time of jobs

is 0,0305 jobs/unit, the average time of algorithm completions

are %20, %24 and %38 of the average completion time of FF,

Paging (U) and MBS methods respectively.

Also, it has been shown that the allocation is contiguously

done and after that fragmentation occurred that prevents a

good allocation. The average productivity of system resources

for non-contiguous algorithms for both job size distributions is

almost equal and this is because both of these algorithms have

the same power in reducing the fragmentation. When the

numbers of free processors of the system were equal or more

than to the requested processors, these algorithms always do

the job allocation successfully.

Figure (6)- The optimum use of system resources in

contiguous and non-contiguous methods for both

communicating models with monotonous job dimensions

distribution in 16 * 16 sub mesh

Figure (7)- The optimum use of system resources in

contiguous and non-contiguous methods for both

communicating models with powered distribution of job

dimensions in 16 * 16 sub mesh

Waiting Time

In figures (8) and (9) the mean waiting time for each job in

regard of system's load is shown for the all to one

communicating model. The results show that QNA has a

better performance than the other contiguous and non-

contiguous allocation algorithms with both job size

distribution models (which are considered in this article) and

the reason for this is that allocation processors in QNA are

more contiguous than the previous non-contiguous allocation

methods which decreases the passed distance by the related

messages to a job. After the decreased distance passed by a

message, we will see a decreasing in the overload of

allocation; and this shows that the processor allocation in

QNA is performed better than the other methods and the

logical result is that the waiting time decreases for a job. QNA

performance in comparison to the FF contiguous allocation

has a considerable improvement for both job size distribution

models as well. For example, figure (8) represents that the

mean waiting time for QNA in the mean inter-arrival time of

jobs with 0,0205 jobs/unit are respectively is equal to %35,

%64 and %70 of the mean waiting time in FF, Paging(U) and

MBS methods.

0

700

1400

2100

2800

3500

4200

4900

0.01 0.02 0.03 0.04 0.05 0.06 0.07

QNA

FF

Multiple_Bud
dy
Paging(0,0)

System Load

A
ve

ra
 g

e
Tu

rn
ar

o
u

n
d

 T
im

e

0

0.2

0.4

0.6

0.8

1

One to All All to All

QNA

FF

MBS

Paging(0,0
)

U
ti

liz
at

io
n

 (
%

)

0

0.2

0.4

0.6

0.8

1

One to All All to All

QNA

FF

U
ti

liz
at

io
n

 (
%

)

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-2 Issue-5, June 2013

 523

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number E1762062513/13©BEIESP

www.ijeat.orgJournal Website:

In figures (10) and (11) according to the system's load for the

all to all communicating model, mean waiting time for each

job is given. Again QNA has a better performance than the

other allocation algorithms (for both job size distribution

models). For example, in figure (11) when mean inter-arrival

time of jobs is 0,05 jobs/unit, the mean waiting time of QNA

algorithm will be %19, %27 and %50 in FF, Paging(U) and

MBS methods respectively.

Figure (8)- The mean waiting time according to the system's

loading in all to one communicating model with monotonous

job dimensions distribution

Figure (9) The mean waiting time according to the system's

loading in all to one communicating model with powered job

dimensions distribution

Figure (10)- The mean waiting time according to the system's

loading in all to all communicating model with monotonous

job dimensions distribution

Figure (10)- The mean waiting time according to the system's

loading in all to all communicating model with powered job

dimensions distribution

CONCLUSION

The efficiency of QNA was compared with the efficiency of

contiguous and non contiguous algorithms. The results of

assimilations shown that QNA in spite of the available

communicating in the net, it has been resulted of interference

of different jobs messages with each other; it increasing the

efficiency to a great extent. QNA also efficiently takes

advantage of the system's resources while keeping maximum

consistency and preventing internal and external

fragmentation.

Also, the results considerably shown that QNA with respect to

job completion time which is an important parameter of

efficiency has superior to known allocation methods such as

MBS and Paging (U). Furthermore; the experiences prove that

QNA also has a better performance in comparison to the

previous contiguous and non-contiguous allocation techniques

when the packs are longer and the sub meshes systems have

larger dimensions. It is expected that this procedure practically

keeps its efficiency because when the sub mesh dimension get

larger, it increasing the needs of the programs such as the

number of the required processors as well.

REFERENCES

[1] Aridor Y., Domany T., Goldshmidt O., Kliteynik Y., Moreira J., and

Shmueli E.; "Open Job Management Architecture for the Blue gene/L

Supercomputer," Proceedings of the 11th Workshop on Job Scheduling
Strategies for Parallel Processing, pp. 91-107, 2005.

[2] Bani-Mohammad S., Ould-Khaoua M., and Ababneh I., “A new

processor allocation strategy with a high degree of contiguity in mesh-

connected multicomputers,” Simulation Modelling Practice and Theory,

pp. 465-480, 2007.

[3] Blumrich M., Chen D., Coteus P., Gara A., Giampapa M., Heidelberger
P., Singh S., Steinmacher-Burow B., Takken T., Vranas P.; "Design and

Analysis of the BlueGene/L Torus Interconnection Network," IBM

Research Report RC23025, pp. 231-235, 2003.
[4] Chang C. Y., Mohapatra P.; "Performance improvement of allocation

schemes for mesh-connected Computers," Journal of Parallel and

Distributed Computing, pp. 40-68, 1998.
[5] Chuang P. J., Tzeng N. F.; "Allocating precise submeshes in mesh

connected systems," IEEE Transactions on Parallel and Distributed

Systems, pp. 211-217, 1994.
[6] Kim G., Yoon H.; "On submesh allocation for mesh-connected

multicomputers: a best-fit allocation and a virtual submesh allocation for
faulty meshes," IEEE Transactions on Parallel and Distributed Systems,

pp. 175-185, 1998.

[7] Lo V., Windisch K., Liu W., and Nitzberg B.; "Non-contiguous
processor allocation algorithms for mesh-connected multicomputers,"

IEEE Transactions on Parallel and Distributed Systems, pp. 712-726,

1997.
[8] Peterson C., Sutton J., and Wiley P.; "iWARP: a 100-POS, LIW

microprocessor for multicomputers," IEEE Micro, pp. 26-29, 1991.

[9] Windisch K., Miller J.V, Lo V.; "ProcSimity: an experimental tool for
processor allocation and scheduling in highly parallel systems," in: Proc.

5th Symposium on the Frontiers of Massively Parallel Computation,

IEEE Computer Society Press, pp. 414-421, 1995.

1

2001

4001

6001

8001

10001

12001

0.0005 0.0045 0.0085 0.0125 0.0165 0.0205 0.0245

QNA

FF

Multiple_Buddy

Paging(0,0)

A
ve

ra
 g

e
W

ai
ti

n
g

Ti
m

e

System Load

0

1000

2000

3000

4000

5000

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

QNA

FF

Multiple_Buddy

Paging(0,0)

A
ve

ra
 g

e
W

ai
ti

n
g

Ti
m

e

System Load

1

2001

4001

6001

8001

10001

12001

0.0105 0.0205 0.0305 0.0405 0.0505

QNA

FF

Multiple_B
uddy

A
ve

ra
 g

e
W

ai
ti

n
g

Ti
m

e

System Load

0

1000

2000

3000

4000

5000

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

QNA

FF

Multiple_B
uddy
Paging(0,0)

A
ve

ra
 g

e
W

ai
ti

n
g

Ti
m

e

System Load

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Efficientand Quick Algorithm for Processor Allocation in Mesh Multi-Computers Network

 524

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number E1762062513/13©BEIESP

www.ijeat.orgJournal Website:

[10] Zhu Y.; "Efficient processor allocation strategies for mesh-connected

parallel computers," Journal of Parallel and Distributed Computing, pp.

328-337, 1992.
[11] D. G. Feitelson, Workload Modeling for Computer

SystemsPerformanceEvaluations,

2007http://www.cs.huji.ac.il/~feit/wlmod/wlmod.pdf
[12] L. He, S. Jarvis, D. Spooner, H. Jiang, D. Dillenberger, and G. Nudd,

Allocating Non-Real-Time and Soft Real-Time Jobs in Multiclusters,

IEEE Transactions on Parallel and Distributed Systems, vol. 17,
no. 2, pp. 99-112, 2006.

[13] M. Levine, CRAY XT3 at the Pittsburgh Supercomputing Centre,

DEISA Symposium, Bologna, 4-5 May 2006.
[14] W. Mao, J. Chen, and W. Watson, Efficient Subtorus Processor

Allocation in a Multi-Dimensional Torus, Proceedings of the 8th

International Conference on High-Performance Computing in Asia-
Pacific Region (HPCASIA’05), IEEE Computer society Press, pp. 53-60,

30 November - 3 December, 2005

MR Rahmat Zolfaghari is presently working as faculty in

Islamic Azad University Hashtgerd Branch, Department

of Computer Engineering, Tehran Iran, He is having 12

years experience both in industry and academia, He

received his Software Engineering Bachelor (BS) of

Shahid Beheshti University in Iran and Software
Engineering Master (MS) of Sharif University of

technology in Iran, His research interests are Database, Software Design ,

Modelling and E_Commerce

http://www.ijeat.org/

