
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-2 Issue-6, August 2013

 415

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number F2084082613/13©BEIESP

Journal Website: www.ijeat.org

Design of 128- bit Kogge-Stone Low Power

Parallel Prefix VLSI Adder for High Speed

Arithmetic Circuits
P.Annapurna Bai, M.Vijaya Laxmi

Abstract - Parallel Prefix adders have been one of the most

notable among several designs proposed in the past. The

advantage of utilizing the flexibility in implementing the three

structures based upon throughput requirements. Due to

continuing integrating intensity and the growing needs of

portable devices, low-power and high-performance designs are of

prime importance. The classical parallel prefix adder structures

presented in the literature over the years optimize for logic depth,

area, and fan-out and interconnect count of logic circuits. In this

paper, a new architecture for performing 128-bit Parallel Prefix

addition is proposed. In this proposed system kogge-stone adder

which is one of types of parallel prefix adder is used. Kogge-stone

is the fastest adder because of its minimum fan-out. The

proposed 128-bit prefix adder is compared with classical adders

of same bit width in terms of power, delay. The results reveal that

the proposed 128-bit Parallel Prefix adder has the least power

delay product when compared with its peer existing adder

structures (ripple carry adder, carry save adders). Simulation

results are verified using Xilinx 14.3 software.

Key Words: dot operator, power delay product, kogge-stone,

carry save adder, fan-out.

I. INTRODUCTION

 VLSI Integer adders find applications in Arithmetic and

Logic units (ALU’s), microprocessors and memory

addressing units. Speed of the adder often decides the

minimum clock cycle time in a microprocessor. The need

for a Parallel Prefix adder is that it is primarily fast when

compared with ripple carry adders. Parallel prefix adders

have been established as the most efficient circuits for

binary addition. Their regular structure and fast

performance makes them particularly attractive for VLSI

implementation. The classical parallel prefix adder

structures presented in the literature over the years optimize

for logic depth, area, and fan-out and interconnect count of

logic circuits. The need for a Parallel Prefix adder is that it

is primarily fast when compared with ripple carry adders.

Parallel Prefix adders (PPA) are family of adders derived

from the commonly known carry look ahead adders. These

adders are best suited for adders with wider word lengths.

PPA circuits use a tree network to reduce the latency to

O(log2 n) where ‘n’ represents the number of bits. Parallel

Prefix Adders (PPA) is variations of the well-known carry

look ahead adder (CLA).

Manuscript published on 30 August 2013.
* Correspondence Author (s)

Mrs. M.Vijayalaxmi, M.E., Associate Professor in ECE department of

Sree kalahasteeswara Institute of Technology, Srikalahasti, Andhra
Pradesh, India.

P.Annapurna Bai, Master of Technology (M.Tech) in DECS at

Sreekalahasteeswara Institute of Technology, Srikalahasti, Andhra Pradesh,
India.

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

The difference between a CLA and a PPA lies in the second

stage which is responsible for the generation of the carry

signals of the binary addition. A parallel Prefix Addition is

generally a three step process. The first step involves the

creation of generate (gi) and propagate (pi) signals for the

input operand bits. The second step involves the generation

of carry signals and finally a simple adder to generate sum.

The three stage structure of carry look ahead adder and

parallel prefix adder is shown in fig 1.

Figure: 1 three stage structure of the carry look ahead

and parallel prefix adder.

II. PREFIX OPERATORS

Parallel-prefix adders, also known as carry-tree adders, pre-

compute the propagate and generate signals. These signals

are variously combined using the fundamental carry

operator (fco). Beside fundamental carry operator also

known as black operator or dot operator as shown in figure

2 ,there is another component called buffer component

which translates the generate and propagate signals. The two

operators are shown in the figure:

Figure 2. The components used in parallel prefix adders

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/

Design of 128- bit Kogge-Stone Low Power Parallel Prefix VLSI Adder for High Speed Arithmetic Circuits

 416

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number F2084082613/13©BEIESP

Journal Website: www.ijeat.org

In this equation, “ ” is applied on two pairs of bits (gin1,

pin1) and (gin2, pin2). These pairs represent generate and

propagate signals used in the addition. The output of the

operator is a new pair of bits generated as described in

equation below

(gout, pout) = (gin1 + pin1. gin2 , pin1. pin2)

The buffer component output is given as

III. EXISTING PARALLEL PREFIX ADDERS

The arrangement of the prefix network specifies the type of

the PPA.It is apparent that a key advantage of the tree

structured adder is that the critical path due to the carry

delay is on the order of log2N for an N-bit wide adder. The

arrangements of the prefix network gives rise to various

families of adders.There are many parallel-prefix adders that

have been invented so far. Among them Brent-kung,

Ladner-Fisher, Han-Carlson, Knowles, and Sklansky adders

were widely known parallel prefix adders.

There exist various architectures for the carry calculation

part. Tradeoffs in these architecture involves

• Area of the Adder

• Its depth

• The fan out of the nodes

• The overall wiring network.

The biggest difference between the full adder and parallel

prefix adder is that in the full adder, summation and carry

calculation is done in the same one bit block but in the

prefix adder, summation and carry calculation are separated

from the bit block and all calculation is treated as a whole in

the carry graph. The carry graph uses the prefix circuit and

this is the origin of the name, “Prefix Adder”.

A. Comparisons

The ripple carry adder is a digital circuit which adds two N-

bit binary numbers. Full adders are connected in a chain

fashion the carry output of first full adder is given as carry

input to the second one and so on. This kind of adder is

typically known as Ripple Carry Adder because carry

ripples to next full adder. Ripple Carry Adder is slowest

among all the adders because every full adder must wait till

the previous full adder generates the carry bit for its input.

The delay is more.

Carry save adder computes the sum of three or more n-bit

numbers in binary. The output of the carry save adder is two

numbers of same dimensions as inputs one is sum sequence

and another is sequence of carry bits. On adding the

sequence of both sum and carry we will get the result but the

result is not in the form of binary. We have to convert the

result. Suppose on adding three number sequences we got

the sum and carry sequences like 1101 and 1111

respectively the result of the carry save adder is 2212 we

have to multiply the each bit in powers of 2 and add the

adjacent bits produces the final result.

 1 1 0 1 ……………………. sum

 1 1 1 1 ……………………...carry

 2 2 1 2 ……………………..result

 8 4 2 1……………………powers of 2

 16 + 8 + 2 +2 = 28………………..final result.

The results will produced in a single tick of clock because

there is no waiting for another bit entry means no carry

propagation which implies reduction in delay and fast when

compared to ripple carry adder. One disadvantage is we

have to convert the result obtained by adding sum and carry

sequences because the result is unambiguous.

This can be avoided by the parallel prefix adders and speed

will be increased than carry save adders. There are different

types of parallel prefix adders. The Sklansky adder presents

a minimum depth prefix network at the cost of increased

fan-out for certain computation nodes. The algorithm

invented by Kogge-Stone has both optimal depth and low

fan-out but produces massively complex circuit realizations

and also account for large number of interconnects. Brent-

Kung adder has the merit of minimal number of

computation nodes, which yields in reduced area but

structure has maximum depth which yields slight increase in

latency when compared with other structures. The Han-

Carlson adder combines Brent-Kung and Kogge-Stone

structures to achieve a balance between logic depths and

interconnect count. Knowles presented a class of

logarithmic adders with minimum depth by allowing the

fan-out to grow. Ladner and Fischer proposed a general

method to construct a prefix network with slightly higher

depth when compared with Sklansky topology but achieved

some merit by reducing the maximum fan-out for

computation nodes in the critical path. Related work on PPA

literature such as Ling adder, achieve improved performance

gains by changing the equation of the dot operator ‘•’.

Taxonomy of classical Prefix Parallel Adders based on fan-

out, interconnect count and depth.

In the proposed system kogge-stone adder is used because it

has minimum fan out of 1 at each node (implies faster

performance) and low depth (less calculation time).

B. Kogge-stone adder

The Kogge–Stone adder is a parallel prefix form carry look-

ahead adder. It generates the carry signals in O(log n) time,

and is widely considered the fastest adder design possible. It

is the common design for high-performance adders in

industry. It takes more area to implement than the Brent–

Kung adder, but has a lower fan-out at each stage, which

increases performance. Wiring congestion is often a

problem for Kogge–Stone adders as well.

An example of a 4-bit Kogge–Stone adder is shown to the

right. Each vertical stage produces a "propagate" and a

"generate" bit, as shown. The culminating generate bits (the

carries) are produced in the last stage (vertically), and these

bits are XOR'd with the initial propagate after the input (the

square boxes) to produce the sum bits. E.g., the first (least-

significant) sum bit is calculated by XORing the propagate

in the farthest-right square box (a "1") with the carry-in (a

"0"), producing a "1". The second bit is calculated by

XORing the propagate in second box from the right (a "0")

with C0 (a "0"), producing a "0".

Inputs: A = 1001 and B = 1100

Outputs: sum =1010

http://www.ijeat.org/
http://en.wikipedia.org/wiki/Carry_look-ahead_adder
http://en.wikipedia.org/wiki/Carry_look-ahead_adder
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Adder_%28electronics%29
http://en.wikipedia.org/wiki/Brent%E2%80%93Kung_adder
http://en.wikipedia.org/wiki/Brent%E2%80%93Kung_adder
http://en.wikipedia.org/wiki/Fan-out
http://en.wikipedia.org/wiki/Carry_%28arithmetic%29
http://en.wikipedia.org/wiki/XOR

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-2 Issue-6, August 2013

 417

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number F2084082613/13©BEIESP

Journal Website: www.ijeat.org

Fig 3: 4 bit kogge-stone adder

In a 4 bit adder like the one shown in the picture to the right,

there are 5 outputs. Below is the expansion:

S0 = (A0 XOR B0) XOR 𝐶𝐼𝑁

S1 = (A1 XOR B1) XOR (A0 AND B0)

S2 = (A2 XOR B2) XOR (((A1 XOR B1) AND (A0 AND

B0)) OR (A1 AND B1))

S3 = (A3 XOR B3) XOR ((((A2 XOR B2) AND (A1 XOR

B1)) AND (A0 AND B0)) OR (((A2 XOR B2) AND (A1

AND B1)) OR (A2 AND B2)))

S4 = (A4 XOR B4) XOR ((((A3 XOR B3) AND (A2 XOR

B2)) AND (A1 AND B1)) OR (((A3 XOR B3) AND (A2

AND B2)) OR (A3 AND B3)))

IV.PROPOSED 128 BIT KOGGE-STONE ADDER

128- Bit kogge-stone adder is shown in the figure. In this

architecture a two 128 bits are added using a kogge-stone

adder. The total number of stages present in the 128 bit

kogge-stone adder is 7 stages (log n), where n= 128 the total

number of input bits.

Fig 5: 128 bit kogge-stone adder’s carry generation stage

block diagram

 In the figure, the kogge-stone adder operation is shown

for 128 bit but not fully because of clumsiness. From LSB to

MSB we can observe that in each stage the black nodes are

reducing or shifted to 2𝑙−1 , (where Ɩ = stage number)

horizontally and the reduced black nodes are inserted with

white nodes. The black nodes are reduced finally to
𝑛

2
 (i.e.,

in the final stage).

V. SIMULATION RESULTS

A. proposed 128 bit parallel prefix adders

In the proposed system we are adding two 128 bits. In the

simulation results adding the inputs a and b, the two 128 bit

numbers and the results are stored in outputs sum(s) and

carry(c). On adding two n bit numbers we get the sum as

n+1bit considering carry.

Here we are forcing the 128 bit value 100000…..0 into ‘a’

and another 128 bit value 10000000…..0 into ‘b’. on adding

these two inputs we get the sum value of 128 bit in ‘s’ as

00000….0 with carry as 10000….0 .

Table 1: Comparison of power and delay

The comparison of kogge-stone adder, ripple carry adder

and carry save adder for 128 bits is given in the table in

terms of power and delay. The power delay product is less

when compared among the adders.

Adder Delay

(ns)

Power(m

W)

Power-delay

product

Ripple carry 15.293 5241.56 80.15

Carry-save 12.257 5365.17 65.76

Kogge-stone 10.584 3062.17 32.4

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Design of 128- bit Kogge-Stone Low Power Parallel Prefix VLSI Adder for High Speed Arithmetic Circuits

 418

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number F2084082613/13©BEIESP

Journal Website: www.ijeat.org

VI. CONCLUSION

 A new efficient structure for multiple (n inputs) m-bit

addition is proposed which is based on adding n inputs bit

by bit from LSB to MSB in a manner that each stage

generates carries which should be given just to the next

higher significant stage, i.e. the operation of each stage is

dependent only to a lower significant stage. This structure

results in an extreme reduction in hardware. The hardware is

reduced since it is not proportional to the number of bits of

inputs. The circuit is implemented for adding 128-bit inputs.

The results show that our methodology of addition performs

the addition with a least delay and power when comparable

to ripple and carry save adder at a reduced cost, and high

speed.

ACKNOWLEDGEMENT

P.Annapurna bai, would like to thank Mrs. M.Vijaya laxmi

M.E.,ECE Department who had been guiding throughout the

project and supporting me in giving technical ideas about

the paper and motivating me to complete the work

efficiently and successfully.

REFERENCES

1. P.Ramanathan, P.T.Vanathi, “Novel Power Delay Optimized 32-

bitParallel Prefix Adder for High Speed Computing”, International

Journal of Recent Trends in Engineering, Vol 2, No. 6, November
2009.

2. R. Zimmermann, Binary Adder Architectures for Cell-Based VLSI

and their Synthesis, ETH Dissertation 12480, Swiss Federal Institute
of Technology, 1997.

3. David Harris, “A Taxonomy of parallel prefix networks,”

Proceedings of the 37th Asilomar Conference on Signals, Systems
and Computers Pacific Grove, California, pp.2213-2217, November

2003.

4. Knowles, “A family of adders”, Proceedings of the 15th IEEE
Symposium on Computer Arithmetic. Vail, Colorado, pp.277-281,

June2001.

5. .Ramanathan, P.T.Vanathi, “A Novel Logarithmic Prefix Adder with
Minimized Power Delay Product”, Journal of Scientific & Industrial

Research, Vol. 69, January 2010, pp. 17-20.

6. R. Ladner and M. Fischer, “Parallel prefix computation,” Journal of
ACM. La Jolla, CA, vol.27, no.4, pp. 831-838, October 1980.

7. Andrew Beaumont-Smith and Cheng-Chew Lim, “Parallel Prefix

Adder Design”, Department of Electrical and Electronic
Engineering, the University of Adelaide, 2001.

8. J. Sklansky, “Conditional sum addition logic,” IRE Transactions on

Electronic computers. New York, vol. EC- 9, pp. 226-231, June
1960.

9. P.Kogge and H.Stone, “A parallel algorithm for the efficient solution

of a general class of recurrence relations,” IEEE Transactions on
Computers, vol. C-22, no.8, pp.786-793, August 1973.

P.Annapurna bai completed her B.tech in

Electronics and Communication Engineering from

Gokula Krishna college of Engineering, sullurpet,
Nellore, Andhra Pradesh, India in 2011.she is

pursuing her Master of Technology (M.Tech) in

DECS at Sreekalahasteeswara Institute of
Technology, Srikalahasti, and Andhra Pradesh,

India. Her interest includes digital design, VLSI

testing.

Mrs. M.Vijayalaxmi,M.E., is currently working as

an Associate Professor in ECE department of Sree

kalahasteeswara Institute of

Technology,Srikalahasti.her research areas are

wireless communications,VLSI signal processing

and 6 international journals published.

http://www.ijeat.org/

