
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-3 Issue-1, October 2013

212

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number A2215103113/13©BEIESP
Journal Website: www.ijeat.org

A Novel Sorting Technique to Sort Elements in

Ascending Order
Debabrata Swain, G.Ramkrishna, Hitesh Mahapatra, Pramoda Patro, Pravin M.Dhanrao

Abstract- Sorting is an operation to arrange the elements of a

data structure in some logical order. In our daily lifes, without

knowing about sorting we are doing works in sorted order. So

that’s why everybody must need an efficient sorting technique

which will solve sorting problem with in limited time. So We have

discussed about various existing sorting algorithms with their

advantage and disadvantage. In this paper, we have proposed a

new sorting algorithm which overcomes some common

disadvantage of some traditional existing algorithms by properly

utilizing the memory. Here, we have compared our algorithm

with traditional existing algorithms by using some factors.

Keywords- Various sorting algorithms. Bubble sort, Selection

sort, Insertion sort and Quick sort

I. INTRODUCTION

Sorting is the most fundamental algorithmic problem in

computer science and a rich source of programming

problems for two distinct reasons. First, sorting is a useful

operation which efficiently solves many tasks that every

programmer encounters. As soon as you recognize your job

is a special case of sorting, proper use of library routines

make short work of the problem. Second, literally dozens of

different sorting algorithms have been developed, each of

which rests on a particular clever idea or observation. Most

algorithm design paradigms lead to interesting sorting

algorithms, including divide-and-conquer, randomization,

incremental insertion, and advanced data structures. Many

interesting programming/mathematical problems follow

from properties of these algorithms. Sorting is an efficient

technique which performs the task to arrange the elements in

ascending or descending order. Sorting technique is

generally used in our day to day life as well as in many

computer applications. E.g.- A teacher keeps the answer

book of the students in sorted order by applying sorting

technique on roll no. Suppose, we may regard a telephone

directory as a list, each record having three fields: name,

address, and phone number. We may wish to locate the

record corresponding to a given number, in which case the

phone number field would be key. One of the sorting

technique is helpful in order to locate the record by using

key. In a database, sorting technique sometimes used to

arrange the records by considering one field of the record.

Typically, sorting technique arranges the element from

highest to lowest or lowest to highest.

Manuscript published on 30 October 2013.
* Correspondence Author (s)

Prof. Debabrata Swain, received his B.Tech in Computer Science and

Engineering from RIT, Berhampur, India
Prof G.Ramakrishna, received his B.Tech in Computer Science and

Engineering from RNEC Ongole, Affliated to JNTU, Hyderabad,India,

Prof Hitesh Mohapatra, received his B.Tech in Information Technology
from GIET, Gunupur, BPUT,India

Prof Pramoda Patro, received his M.Sc in Mathematics from Khallikote

Autonomous College, Berhampur, India
Prof. P. M. Dhanrao has completed B.E. (Computer) From University

of Pune, India.

© The Authors. Published by Blue Eyes Intelligence Engineering and

Sciences Publication (BEIESP). This is an open access article under the

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

Most sorting algorithms uses a common two steps i.e.,

compare two elements and exchange them in sorted order.

Sorting algorithm are mainly used to manage the data. In

some cases, a large number of records can be sorted by

applying sorting on a particular common field of each

record. That common field is called key. While searching

any element by using binary search, we must sort the

elements in ascending order before. We characterize sorting

methods into two broad categories: i) internal methods(i.e.,

methods to be used when the list to be sorted is small

enough so that the entire sort can be carried out in main

memory).ii) external methods (i.e., methods to be used on

larger lists).Our proposed algorithm comes under the

internal method.

1.1 USES AND APPLICATIONS OF SORTING

We have two important uses of sorting:

1) as an aid in searching

2) as a means for matching entries in lists.

1.2 APPLICATIONS

Sorting also finds application in the solution of many other

more complex problems from areas such as optimization,

graph theory and job scheduling.Consequently,the problem

of sorting has great relevance in the study of computing.

The key to understanding sorting is seeing how it can be

used to solve many important programming tasks:

1.2.1 Uniqueness Testing

How can we test if the elements of a given collection of

items S are all distinct? Sort them into either increasing or

decreasing order so that any repeated items will fall next to

each other. One pass through the elements testing if S[i] =

S[i + 1] for any 1 ≤ i < n then finishes the job.

1.2.2 Deleting Duplicates

How can we remove all but one copy of any repeated

elements in S? Sort and sweep again does the job. Note that

the sweeping is best done by maintaining two indices —

back, pointing to the last element in the cleaned-out prefix

array, and i, pointing to the next element to be considered. If

S[back] <> S[i], increment back and copy S[i] to S[back].

1.2.3 Prioritizing Events

Suppose we are given a set of jobs to do, each with its own

deadline. Sorting the items according to the deadline date

(or some related criteria) puts the jobs in the right order to

process them. Priority queue data structures are useful for

maintaining calendars or schedules when there are insertions

and deletions, but sorting does the job if the set of events

does not change during execution.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/

A Novel Sorting Technique to Sort Elements in Ascending Order

213

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number A2215103113/13©BEIESP
Journal Website: www.ijeat.org

1.2.4 Median/Selection

Suppose we want to find the kth largest item in set S. After

sorting the items in increasing order, this fellow sits in

location S[k]. This approach can be used to find (in a

slightly inefficient manner) the smallest, largest, and median

elements as special cases.

1.2.5 Frequency Counting

Which is the most frequently occurring element in S, i.e., the

mode? After sorting, a linear sweep lets us count the number

of times each element occurs.

1.2.6 Reconstructing the Original Order

How can we restore the original arrangement of a set of

items after we permute them for some application? Add an

extra field to the data record for the item, such that the ith

record sets this field to i. Carry this field along whenever

you move the record, and later sort on it when you want the

initial order back.

1.2.7 Set Intersection/Union

How can we intersect or union the elements of two

containers? If both of them have been sorted, we can merge

them by repeatedly taking the smaller of the two head

elements, placing them into the new set if desired, and then

deleting the head from the appropriate list.

1.2.8 Finding a Target Pair

How can we test whether there are two integers x, y,z such

that x + y = z for some target z? Instead of testing all

possible pairs, sort the numbers in increasing order and

sweep. As S[i] increases with i, its possible partner j such

that S[j] = z − S[i] decreases. Thus decreasing j

appropriately as i increases gives a nice solution.

1.2.9 Efficient Searching

How can we efficiently test whether element s is in set S?

Sure, ordering a set so as to permit efficient binary search

queries is perhaps the most common application of sorting.

Just don’t forget all the others!

Simplest sorting algorithm

Idea:

1. Set flag = false

2. Traverse the array and compare pairs of

two elements

• 1.1 If E1  E2 - OK

• 1.2 If E1 > E2 then Switch(E1,

E2) and set flag = true

3. If flag = true goto 1.

Here, we have discussed some existing algorithms a like

Bubble sort, insertion sort, selection sort and Quick sort

used for sorting the elements of an array. Each sorting

algorithms having some advantages as well as disadvantages

that we will discuss in next section. In this paper, we have

considered proper utilization of memory and also the

simplicity of the algorithm. By taking these two factors, we

compared existing algorithms with our proposed algorithm.

II. LITERATURE SURVEY

2.1 Bubble sort:

Simplest sorting algorithm

Idea:

1. Set flag = false

2. Traverse the array and compare pairs of

two elements

• 1.1 If E1  E2 - OK

• 1.2 If E1 > E2 then Switch(E1,

E2) and set flag = true

3. If flag = true goto 1.

Example:

1 1 23 2 56 9 8 10 100

2 1 2 23 56 9 8 10 100

3 1 2 23 9 56 8 10 100

4 1 2 23 9 8 56 10 100

5 1 2 23 9 8 10 56 100

---- finish the first traversal ----

---- start again ----

1 2 23 9 8 10 56 100

1 1 2 9 23 8 10 56 100

2 1 2 9 8 23 10 56 100

3 1 2 9 8 10 23 56 100

---- finish the second traversal ----

---- start again ----

2.2 Insertion-Sort

One of the simplest sorting algorithms is the insertion sort.

Insertion sort consists of n - 1 passes. For pass p = 2 through

n, insertion sort ensures that the elements in positions 1

through p are in sorted order. Insertion sort makes use of the

fact that element in positions 1 through p - 1 are already

known to be in sorted order. Figure 7.1 shows a sample file

after each pass of insertion sort.

Figure 2.1 shows the general strategy. In pass p, we move

the pth element left until its correct place is found among the

first p elements. The code in Figure 7.2 implements this

strategy. The sentinel in a[0] terminates the while loop in

the event that in some pass an element is moved all the way

to the front. Lines 3 through 6 implement that data

movement without the explicit use of swaps. The element in

position p is saved in tmp, and all larger elements (prior to

position p) are moved one spot to the right. Then tmp is

placed in the correct spot. This is the same technique that

was used in the implementation of binary heaps.

Original 34 8 64 51 32 21 Positions Moved

--

After p = 2 8 34 64 51 32 21 1

After p = 3 8 34 64 51 32 21 0

After p = 4 8 34 51 64 32 21 1

After p = 5 8 32 34 51 64 21 3

After p = 6 8 21 32 34 51 64 4

Figure 2.1 Insertion sort after each pass

2.3 Selection Sort

Insert elements in a priority queue implemented with an

unsorted sequence remove them one by one to create the

sorted sequence

For example, to sort a list of integers into ascending order,

we do the following:

a) Scan the entire list to find the smallest value (selecting

the smallest value).

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-3 Issue-1, October 2013

214

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number A2215103113/13©BEIESP
Journal Website: www.ijeat.org

b) Exchange that value with the value in the first position

of the list.

c) Treat the rest of the values (from second position till the

last) as a new list and repeat the first two steps until the

list is exhausted.

• Example

 Original 34 8 64 51 32 21

Moved

 After p=1 8 34 64 51 32 21

1

 After p=2 8 34 64 51 32 21

0

 After p=3 8 34 51 64 32 21

1

 After p=4 8 32 34 51 64 21

3

 After p=5 8 21 32 34 51 64

4

2.4 Quick Sort

Another divide-and-conquer sorting algorithm. To

understand quick-sort, let’s look at a high-level description

of the algorithm

1) Divide

If the sequence S has 2 or more elements, select an element

x from S to be your pivot. Any arbitrary element, like the

last, will do. Remove all the elements of S and divide them

into 3 sequences:

L, holds S’s elements less than x

E, holds S’s elements equal to x

G, holds S’s elements greater than x

2)Recurs

Recursively sort L and G

3)Conquer

 Finally, to put elements back into S in order, first inserts the

elements of L, then those of E, and those of G.

III. PROPOSED ALGORITHM

Here, First, before implementing the algorithm, we asking

the user to enter the maximum value for an element to

prompt by user. Dynamically create the array, whose size is

equal to maximum value entered by user. Then, we assign 0

in every position of the array. Then user is asked to enter the

number of elements, which is less than or equal to size of

array. While reading each element, algorithm need to check

the value entered by the user less than or equal to maximum

value of an array or not. If the entered value is less than or

equal to maximum value, then only it will stored in array.

Otherwise, it will shown an error message “invalid value

entered”, then user is asked to enter valid value again. The

value is assigned must be same as the respective position of

the array. Here our proposed algorithm only considered for

unique values. After all values entered by user. Our

algorithm will place all non-zero values in sequence order

starting from 0th index to n-1th index. After that we find all

the elements are arranged in sorted order(Ascending order).

Then we will keep the memory i.e., required to hold the

non-zero values present in the array and then release the

extra memory present in the array using dynamic memory

allocation.

Steps for Proposed Algorithm

Sort(ptr,m,n)

ptr—Integer type pointer used to point to the starting

location of the dynamically Allocated memory.

m—Maximum value among all array elements

n—Number of nonzero values entered by user (n<=m)

1) Read maximum value among all array

elements i.e., m

2) Create an array dynamically for m-elements

using ptr.

3) Assign 0 to all m-elements of Array.

4) Read value of n.

5) for i0 to n-1

 do

6) Read non-value ‘v’

7) if v<=m then

8) *(ptr+(v-1))=v

9) else

10) Display “invalid value entered ,enter

again valid value”

11) goto step 7

[end-loop]

12) Assign variable c to 0

13) for i0 to m-1

do

14) if(*(ptr+i)!=0)

 then

a) *(ptr+c)=*(ptr+i)

b) c=c+1

[end-if]

 [end-loop]

15) Now release the m-n memory locations

Here we have shown example to Sort values 10, 7,5,3,9 in

ascending order using our proposed algorithm Sort values

10, 7,5,3,9 in ascending order

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

A Novel Sorting Technique to Sort Elements in Ascending Order

215

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number A2215103113/13©BEIESP
Journal Website: www.ijeat.org

1)Here M=10 (Max value among all array elements = Size

of Array)

2) Assigning “0” to each array location

3) Put elements in to the array using the rule arr[v-1]=v

arr[10-1]=10

arr[9]=10

4) Moving all Non-Zero value to sequential indices

5) After releasing the space of (m-n) elements

IV. PERFORMANCE ANALYSIS

Here after seeing the performance of different sorting

algorithms we come to a conclusion that our algorithm is

better than all traditional algorithms in terms of memory

utilization. As we have used the dynamic memory in our

algorithm. No traditional algorithm talks about proper

memory utilization. Here we have used Random access

technique while putting the elements at appropriate positions

in the array which faster than sequential access that is used

by other traditional algorithms. Also we found that our

algorithm is easy to understand and also user friendly as

compared to all traditional algorithms. When we are

providing limited no of inputs we found that our algorithm

is working efficiently as compared to other algorithms. But

when no. of inputs are large at that time quick sort is

showing good performance. Our algorithm is considering

the unique inputs for the array to be sorted. If we can use

this algorithm for different applications where no. Of inputs

are less, and then we can get a better performance in that

particular application.

V. CONCLUSION

Here we have shown our algorithm by using which we can

sort the different array elements in Ascending order. Our

algorithm is only working for unique elements. Here we

have also shown how memory is properly utilized in our

policy using dynamic memory allocation. By using this we

have released the unused memory after arranging the

elements in sorted order.

VI. FUTURE WORK

Here in this algorithm we have only considered unique

inputs for the algorithm. So in recent future we are trying to

develop the algorithm so that it will work for duplicate

inputs. Also in recent future we want to introduce some new

concepts in our algorithm so it will so better performance

when no. Of inputs are more. Here we have discussed less

about the performance of the algorithms in terms of time

complexity that we want to do in the future work.

VII. ACKNOWLEDGEMENT

This work is only complete due to the continuous

encouragement and guidance of our esteemed Principal

Dr.D.N.Kyatanvar(SRES COE,KOPARGAON)and Mr. A.

A. Barbind Head of Department, Information Technology

Department. We are also thankful to all our colleagues and

specially to SRES College Of Engineering ,Kopargaon for

providing us with support and technical guidance.

REFERENCES

[1] http://en.wikipedia.org/wiki/Sorting_algorithm

[2] http://en.wikipedia.org/wiki/Selection_sort
[3] http://en.wikipedia.org/wiki/Bubble_sort

[4] http://en.wikipedia.org/wiki/Insertion_sort

[5] http://en.wikipedia.org/wiki/Selection_sort
[6] http://en.wikipedia.org/wiki/Quicksort

[7] http://en.wikipedia.org/wiki/Merge_sort
[8] http://www.cs.manchester.ac.uk/ugt/COMP26912/lecture/lecture-

sorting.pdf

[9] http://www.cs.ucf.edu/courses/cop3502/nihan/spr03/sort.pdf
[10] Introduction to Algorithms by Thomas H. Cormen, Charles E.

Leiserson, Ronald L. Rivest, fifth Indian printing (Prentice Hall of

India private limited), New Delhi-110001
[11] Computer Algorithms by Ellis Horowitz, Sartaj Sahni, Sanguthevar

Rajasekaran, Galgotia publications,5 Ansari road, Daryaganj, New

Delhi-110002
[12] C.A.R. Hoare, Quick sort, Computer Journal, Vol. 5, 1, 10-15 (1962)

[13] P. Hennequin, Combinatorial analysis of Quick-sort algorithm,

RAIRO: Theoretical Informatics and Applications, 23 (1988), pp.
317–333

[14] Lecture Notes on Design & Analysis of Algorithms G P Raja Sekhar

Department of Mathematics I I T Kharagpur

http://www.ijeat.org/
http://en.wikipedia.org/wiki/Sorting_algorithm
http://en.wikipedia.org/wiki/Selection_sort
http://en.wikipedia.org/wiki/Bubble_sort
http://en.wikipedia.org/wiki/Insertion_sort
http://en.wikipedia.org/wiki/Selection_sort
http://en.wikipedia.org/wiki/Quicksort
http://en.wikipedia.org/wiki/Merge_sort
http://www.cs.manchester.ac.uk/ugt/COMP26912/lecture/lecture-sorting.pdf
http://www.cs.manchester.ac.uk/ugt/COMP26912/lecture/lecture-sorting.pdf
http://www.cs.ucf.edu/courses/cop3502/nihan/spr03/sort.pdf

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-3 Issue-1, October 2013

216

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number A2215103113/13©BEIESP
Journal Website: www.ijeat.org

[15] Knuth D. (1997) “The Art of Computer Programming, Volume 3:
Sorting and Searching’’, Third Edition. AddisonWesley, 1997. ISBN

0-201-89685-0. pp. 138–141, of Section 5.2.3: Sorting by Selection

[16] Let Us C by Yashvant Kanethkar, 8th edition (BPB publications).b-

14 Connaught place, New Delhi-110001

[17] MERRITT S. M. (1985), “An inverted taxonomy of Sorting

Algorithms. Programming Techniques and Data Structures”,
Communications of ACM, Vol. 28, Number 1, ACM

Prof Debabrata Swain, received her B.Tech in Computer Science and
Engineering from RIT, Berhampur, India, in June 2008, and M.Tech in

Computer Science from Berhampur University, India in June 2011.He has

4.5 years of experience. Currently he is working as an Asst. Professor in
Department Information Technology at SRES college of Engineering,

Kopargaon, Maharashtra India .His prime research interest includes

System architecture and performance evaluation, Image processing,
Microprocessors,Data structure. He has 5 International Publications

excluding this work.

Prof G.Ramakrishna, received his B.Tech in Computer Science and

Engineering from RNEC Ongole, Affliated to JNTU, Hyderabad,India, in

June 2006, and M.Tech in Computer Science and Engineering from
Nagarjuna University, India in June 2010.He has 4.10 years of experience.

Currently he is working as an Asst. Professor in Department Information

Technology at SRES college of Engineering, Kopargaon, Maharashtra
India .His prime research interest includes Data Ware Housing & Data

Mining, Image processing, Data structure. He has 2 Professional
Certifications excluding this work.

Prof Hitesh Mohapatra, received his B.Tech in Information Technology
from GIET , Gunupur, BPUT,India, in June 2006, and M.Tech in

Computer Science Engineering from CET,Bhubaneswar, BPUT, India in

June 2009.He has 6 years of experience. Currently he is working as an Asst.
Professor in Department Computer Engineering at SRES college of

Engineering, Kopargaon,Maharashtra ,India .His prime research interest

includes Software Engineering and Computer Security, Bioinformatic, Data

structure. He has 1 International Publications excluding this work.

Prof Pramoda Patro, received her M.sc in Mathematics from Khallikote

Autonomous College, Berhampur, India, in June 2007, and M.Tech in

Computer Science from Berhampur University, India in June 2009.He has
5.3 years of experience. Currently he is working as an Asst. Professor in

Department of Computer Engineering at Amrutvahini college of

Engineering, Sangamner, Maharashtra India .His prime research interest
includes Fuzzy logic, neural network and Artificial Intelligence. He

has 1 International Publications excluding this work.

Prof. P. M. Dhanrao has completed B.E. (Computer) From University of

Pune in 2008. He is having total 5.2 years of experience (Industrial +

Educational). He is Pursuing M. Tech (CSE) From Rajiv Gandhi University
(RGPV). He has presented various papers at National Conference and at

National Level Paper presentation. He has attended various workshops Of

IIT Bombay, NITTR MHRD GOI, MSBTE Mumbai and cyber Forensics of
total 4 Weeks and 4 days. He has attended various seminars organized by

University Of Pune. He has worked as Controller Of Examinations. He has

judged Various Competitions.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

