
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-3 Issue-2, December 2013

32

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number B2338123213/13©BEIESP
Journal Website: www.ijeat.org

Abstract – The paper proposes an extension for architecture

framework Togaf. In particular, it addresses on architecture

exceptions and their governance. The article covers a reference

model for architecture exception governance (AEG RM) and the

way how to integrate it with Togaf Framework. As part of AEG

RM there is defined an entity called architecture exception with its

main attributes. AEG RM defines all the processes necessary for

architecture exception governance, roles and responsibilities,

principles a procedures and supporting tools. There is one chapter

dedicated only for integration of Togaf and AEG RM. As

summary, the paper has two main focuses. The first one is to

present architecture exception governance reference model. The

second is to integrate the reference model with Togaf architecture

Framework. The article requires at least basic knowledge in

architecture governance and architecture framework Togaf.

Index Terms—Architecture, Exception, Governance,

Reference Model, Togaf.

I. INTRODUCTION

 This paper introduces an extension of architecture

framework Togaf [5]. In particular, it focuses on architecture

dispensations (exceptions) and their governance. Togaf itself

includes "architecture compliance" and "architecture

dispensation" processes in architecture governance section to

cover that area. The following text respects this approach and

develops it into more detail and extent. Actually this paper

introduces an entire architecture exception governance

reference model that can help to implement Togaf into

organizations of different kind. The model is designed to be a

reference model for this field of interest, so it is possible to

use it beyond the Togaf, but in this article the focus is

concentrated on integration with Togaf. AEG RM is not

specific for concrete business field and is general enough to

cover all of them.

II. ARCHITECTURE EXCEPTION

As first, let us define the core entity around which the

governance model is designed. Architecture exception (AE)

is an entity that brings together designed project solution with

existing target (TO-BE) architecture. Simultaneously, there

must be true that this relationship is evaluated as

inconsistency. The inconsistency emerges when there is at

least one deviation between the designed solution and the

target architecture at defined level of architecture description

[1] detail. An instance of architecture exception is one

Manuscript published on 30 December 2013.
* Correspondence Author (s)

Marek Ondruška*, System Analysis Department, University of

Economics in Prague, Prague, Czech Republic.

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

particular occurrence of architecture exception entity.

As target architecture it is meant the future vision of

architecture and all the principles and procedures captured in

different architecture artifacts as models, patterns and so on

related to the future architecture. Sometimes, architecture

exception is called architecture dispensation, but it is the

same.

Fig 1. Architecture Exception Attributes

A. AE Attributes

As next, a set of the most important attributes of architecture

exception is defined. The set represents a minimal set see Fig.

1, but it can be extended if necessary during implementation

into and tailoring for specific environment.

1) ID - is a unique identifier of an architecture exception

instance.

2) Name - is a short name that refers to the content of

architecture exception.

3) Description - is a short text that accurately explains the

architecture exception.

4) Owner - is a role that is responsible for

instance/instances of architecture exceptions from

assignment to acceptance of its removal (during the AE

lifecycle).

Architecture Exception Governance Reference

Model - Togaf Framework Extension

Marek Ondruška

http://www.ijeat.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/

Architecture Exception Governance Reference Model - Togaf Framework Extension

33

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number B2338123213/13©BEIESP
Journal Website: www.ijeat.org

5) Solver - is a role that is responsible for architecture

exception removal (typically project).

6) Creator - is a role that caused an architecture exception

emergence (typically other project).

7) Inconsistency - designed solution - is a reference to a

part of solution design where the inconsistency exists.

8) Inconsistency - target architecture - is a reference to a

part of model, standard, pattern or other architecture

artifact that is violated by the inconsistency - designed

solution.

9) Removal Costs - represent costs for architecture

exception removal (can change in time, therefore it must

be updated, see support processes for more detail).

10) Total Costs of Existence = removal costs + sunken

costs

11) Related Architecture Exceptions - are references to

other instances of architecture exception entity that are in

some way related to the particular exception instance.

12) State - is the state of architecture exception at the

particular point in time.

Fig 2. Architecture Exception States

B. AE Lifecycle States

There is a relationship between AEG RM processes and

AE states. It means the processes change the state of

architecture exception. Relationships among the states are

depicted on Fig 2. Now, let us define all the states.

1) Identified - architecture exception comes into this state

after architects identify existence of this architecture

exception. Let us call it (draft or candidate architecture

exception).

2) Approved - architecture exception is approved when

architecture bodies (for example architecture

committees) approves candidate architecture exception

as architecture exception.

3) Registered - is the first state when an architecture

exception is governed by architecture exception

governance. The previous states where related to

compliance process rather than dispensation process.

4) Approved to removal - when architecture committee in

collaboration with owner decides that there is a

particular instance of architecture exception that should

be removed. For example there is a suitable project for

its removal or the sunken costs are too high and the

exception must be removed .

5) Removed - this state comes when the solver proclaims

the architecture exception is removed.

6) Accepted - is the state when owner and architecture

bodies accept the removal of architecture exception

removal.

7) Archived - there exist reasons why to store information

about architecture exceptions after it was removed.

Audit purposes are good example why to store the

information for defined time period. After removal,

architecture exception is in archived state.

8) Shredded - this is the state when architecture exception

is shredded. This does not necessary means the record

about architecture exception is shredded too, but all the

documentation related to architecture exception is

deleted from evidence.

III. GOVERNANCE

There are many definitions addressing the area of

governance [2], [3], [5], [6]. To precisely analyze what

governance is about is beyond this article, but it is necessary

to setup a basic notion. This article defines governance as all

the processes, roles and responsibilities, principles and

procedures and tools that are necessary to govern the

lifecycle of architecture exception. This notion of governance

is adopted later in the paper when AEG RM is being

designed.

IV. PROCESSES

Architecture exception governance processes are grouped

into five domains related to architecture exception lifecycle -

capture, manage, remove and archive see Fig 3. The support

domain of processes is not related to exactly one domain, but

it often goes cross domains. Identification and acceptance of

an architecture exception instance is done before the

exception is governed with the architecture exception

governance. Actually, this is done in Togaf – process

compliance. This process should be extended with principles

that define what exception is and what is not. Architecture

exception governance is more detailed developed what Togaf

calls "dispensation process". Architecture exception

governance goes into higher detail and defines all the parts of

governance: all the processes, roles and responsibilities,

principles and policies and tools.

Fig 3. AEG Process Domains

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-3 Issue-2, December 2013

34

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number B2338123213/13©BEIESP
Journal Website: www.ijeat.org

A. Capture

Processes related to Capture phase are mainly about

registration of new incoming architecture exceptions into

evidence (architecture portfolio), after they were accepted in

compliance process.

1) Registration of emerged and accepted architecture

exception - provides initial AE registration service. New

approved AE is registered with the required metadata

and documentation into the evidence (Architecture

portfolio).

2) Assignment of architecture exception owner - finds

the suitable owner of AE who is capable of AE removal

governance.

3) Cost assessment of architecture exception removal -

assess the costs of architecture exception removal in

future project/s.

4) Finalization of registration - provides final check and

completion of AE registration.

B. Manage

Processes related to Manage phase are about considering

whether an architecture exception instance should be handed

over for removal or not.

1) Decision making about AE removal - is decision

making process focused on starting the removal phase of

AE instance/s at right time and with suitable solver.

2) Search for suitable solver of the AE - is complement

process to the previous one in a way that it brings the

suitable solver.

C. Remove

Processes related to Remove phase are the architecture

processes that help the solver (project) with the removal and

govern it. How project (solver) functions is a subject of

standard project methodologies.

1) Provide documentation of AE - is about AE

documentation provisioning from the owner to the

solver.

2) Design and accept of AE removal way - adds the AE

solution into the concept of solution design. Solution

Design must remove the AE.

3) Removal progress monitoring - monitors the removal

process to support the removal achievement. If

something goes wrong, this process can trigger

escalation procedures and other methods to resolve the

unpleasant situation .

4) Acceptance of final removal - final acceptance of AE

removal.

D. Archive

Processes related to Archive phase address the area of

storing the architecture exceptions in evidence after they

were resolved/removed for audit purposes as example.

1) AE archiving - archive AE for defined archival period.

2) Provide information about AE - provide information

about AE during archive phase on demand.

3) Discard AE from AE evidence - delete the AE from

evidence.

E. Support

Processes related to Support phase are not the core

processes that govern architecture exception, but they are

those processes that support the core processes or solve some

specific areas not directly in relationship with exception and

its lifecycle or they cross more domains than one.

1) Update of architecture exceptions because of target

architecture change - when target architecture is

changed, it is necessary to validate all the impacted

exceptions and update them

2) Request for missing/non-existing architecture

standards - if there are missing architecture artifacts for

some architecture area, there should exist a process

enabling to request for delivery of such artifacts.

3) Architecture portfolio consolidation - this process is

about merging and splitting of architecture exceptions in

portfolio. In some cases, there is reasonable to remove

not only one, but more grouped architecture exceptions

in the same project.

4) Risks escalation - One of the standard processes in

organizations is risk management. There must be a way

how to generate architecture exception specific risks and

let them be managed by risk management.

5) Architecture exception governance improvement

process - is process of architecture exception

governance continual improvement. It means it covers

such activities as analysis, design, implement, monitor of

architecture exception governance.

6) Budget and finance management for AE removal -

this process addresses budget and finance management

to enable AE removals in projects.

7) Update of removal costs and sunken costs of

architecture exceptions in portfolio - these two

financial parameters must be regularly checked because

they are not stable in many cases in time and should be

updated to reflect the real situation.

V. ROLES

Let us define the main roles of architecture exception

governance that are related to the processes defined above.

1) AE Owner - is responsible for assigned set of

architecture exceptions. In particular, the role should

push the exceptions through the lifecycle of architecture

exception.

2) AE Solver - is responsible for removal of architecture

exception

3) AE Creator - is responsible for architecture exception

existence

4) AE SPC and Portfolio Manager - is responsible for

gathering all the incoming architecture exceptions, for

their proper evidence.

5) AE Costs Evaluator - is responsible for evaluation of

AE costs of removal and sunken costs

6) AEG Owner - is responsible for architecture exception

governance improvement

7) AE Removal Way Designer - is responsible for design

of removal way of architecture exception

8) AE Decision and Acceptance Committees - are

responsible mainly for acceptance of AE removal and

acceptance of chosen solver and way of removal.

VI. PRINCIPLES AND POLICIES

There are many principles and policies related to

architecture exception governance. Let us mention some of

the main ones.

http://www.ijeat.org/

Architecture Exception Governance Reference Model - Togaf Framework Extension

35

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number B2338123213/13©BEIESP
Journal Website: www.ijeat.org

There must be principles and policies for calculation of

removal costs or there must be principles and policies for

architecture exception documentation. As next, principles

and policies covering different criteria that are monitored for

separate exceptions or there must be principles and policies

that help make a decision when and which architecture

exceptions should be hand over for removal.

Fig 4. Relationship of Togaf ADM and AEG RM

VII. TOOLS

Architecture exception portfolio - is a tool that supports

most of the above mentioned processes with use cases as

“create new architecture exception”, “read/display

architecture exception”, “update architecture exception”,

“delete architecture exception” and display different reports

and views of exceptions. The main purpose of architecture

portfolio is evidence of architecture exceptions with their

documentation.

VIII. INTEGRATION WITH TOGAF

Togaf architecture framework addresses architecture

exceptions area with definition of two processes

"compliance" and "dispensation". These processes are part of

architecture governance. Architecture governance is applied

in the implementation governance phase of ADM cycle. This

is the first place of architecture exception governance

integration with Togaf. There is no difference if we consider

only a subset of architectures addressed by Togaf as business

architecture, application architecture, data architecture and

technology architecture. This means the integration can be

done for example only for IS/IT architecture or for the entire

enterprise architecture. For the purpose of this article, the

enterprise architecture is considered.

The Togaf – compliance process is about check and

validation of designed solution against defined standards and

different architecture artifacts. As a result, the solution can be

compliant with the standards. Otherwise, the project must

change the design to be compliant or can request a

dispensation. This is the reason, why Togaf defines

dispensation process. The compliance process must be

enhanced with criteria that help identify when a deviation

from standards is an exception and when it is not. It means

that organization can define certain criteria that identify

exception, but do not have to. That is the case all the

deviations that are not resolved by project are automatically

considered as exceptions. This is an implementation detail

that must be resolved in accordance with specific

implementation environment (organization). As a

recommendation, it is reasonable to setup these criteria,

because not all the deviations make sense to track and govern

as exceptions. Even the number of them would be too high. It

would lead to high costs for operation of AEG.

Architecture exception governance reference model

promotes the dispensation process on governance level and

extends it in detail and extent. For example, the reference

model suggests that there is not only one process, but rather

there is a process model as was described before. The

architecture governance and therefore dispensation process is

integrated with ADM - implementation governance phase.

As it was described, AEG RM is an extension of architecture

dispensation process that is why this integration is reusable

even for integration AEG RM with Togaf. In this case, the

integration of AEG RM is particularly with architecture

development method (ADM) see Fig 4.

Second place of Togaf and architecture exception

governance integration is through part III – reference models.

As described before, architecture exception governance is

designed as reference model and can be used as more detailed

developed dispensation process. So, it is possible to add the

reference model among the others that Togaf references see

Fig 5.

Fig 5. Togaf Reference Models - AEG RM

IX. CONCLUSION

AEG RM as was described in the paper is a result of my

long term research in the area of architecture governance.

Nowadays, the reference model is being tailored and

implemented in banking sector organization. The goal is to

get feedback and then to fine-tune the reference model to be

useful for all the organizations that need to implement system

for architecture exception governance. Organizations that use

Togaf Framework for architecture governance can benefit

from section called integration with Togaf during

implementation of the reference model for architecture

exception governance.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-3 Issue-2, December 2013

36

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number B2338123213/13©BEIESP
Journal Website: www.ijeat.org

REFERENCES

[1] ISO. IEEE Recommended Practice for Architectural Description of
Software-Intensive Systems. 2000. Retrieved from

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=875998
[2] Marks, E.A. Service-Oriented Architecture Governance for the

Services Driven Enterprises, John Wiley & Sons. 2008.

[3] Oracle. SOA Governance: Framework and Best Practices.
Retrieved fromhttp://www.oracle.com/us/technologies/soa/oracl

e-soa-governance-best-practice-066427.pdf
[4] The Open Group. SOA Governance Framework. 2009. Retrieved

from

http://www.opengroup.org/projects/soa-governance/uploads/40/19
263/SOA_Governance_Architecture_v2.4.pdf

[5] The Open Group. TOGAF Version 9.1. The Open Group. Retrieved
from http://pubs.opengroup.org/architecture/togaf9-doc/arch/

[6] Weill P., Ross J.W. IT Governance: How Top Performers Manage

IT Decision Rights for Superior Results. Harvard Business School
Press. 2004.

http://www.ijeat.org/

