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Abstract: Enzymes are large biological molecules responsible for 
the thousands of metabolic processes that sustain life. They are 
highly selective catalysts, greatly accelerating both the rate and 
specificity of metabolic reactions, from the digestion of food to 
the synthesis of DNA. Most enzymes are proteins, although some 
catalytic RNA molecules have been identified. Enzymes adopt a 
specific three-dimensional structure, and may employ organic 
(e.g. biotin) and inorganic (e.g. magnesium ion) cofactors to 
assist in catalysis. Multiple experimental approaches have been 
applied to generate nearly all possible mutations of target 
enzymes, allowing the identification of desirable variants with 
improved properties to meet the practical needs. Meanwhile, an 
increasing number of computational methods have been 
developed to assist in the modification of enzymes during the past 
few decades. With the development of bioinformatics algorithms, 
computational approaches are now able to provide more precise 
guidance for enzyme engineering and make it more efficient and 
less laborious. In this review, we summarize the recent advances 
of method development with significant biological outcomes to 
provide important insights into successful computational protein 
designs.  
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I. INTRODUCTION 

Enzymes are large biological molecules responsible for the 
thousands of metabolic processes that sustain life.[1][2] 
They are highly selective catalysts, greatly accelerating both 
the rate and specificity of metabolic reactions, from the 
digestion of food to the synthesis of DNA. Most enzymes 
are proteins, although some catalytic RNA molecules have 
been identified. Enzymes adopt a specific three-dimensional 
structure, and may employ organic (e.g. biotin) and 
inorganic (e.g. magnesium ion) cofactors to assist in 
catalysis. 
In enzymatic reactions, the molecules at the beginning of the 
process, called substrates, are converted into different 
molecules, called products. Almost all chemical reactions in 
a biological cell need enzymes in order to occur at rates 
sufficient for life. Since enzymes are selective for their 
substrates and speed up only a few reactions from among 
many possibilities, the set of enzymes made in a cell 
determines which metabolic pathways occur in that cell. 
Like all catalysts, enzymes work by lowering the activation 
energy (Ea‡) for a reaction, thus dramatically increasing the 
rate of the reaction. As a result, products are formed faster 
and reactions reach their equilibrium state more rapidly. 
Most enzyme reaction rates are millions of times faster than 
those of comparable un-catalyzed reactions.  
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As with all catalysts, enzymes are not consumed by the 
reactions they catalyze, nor do they alter the equilibrium of 
these reactions. However, enzymes do differ from most 
other catalysts in that they are highly specific for their 
substrates. Enzymes are known to catalyze about 4,000 
biochemical reactions.[3] A few RNA molecules called 
ribozymes also catalyze reactions, with an important 
example being some parts of the ribosome.[4][5] Synthetic 
molecules called artificial enzymes also display enzyme-like 
catalysis.[6] 
Enzyme activity can be affected by other molecules. 
Inhibitors are molecules that decrease enzyme activity; 
activators are molecules that increase activity. Many drugs 
and poisons are enzyme inhibitors. Activity is also affected 
by temperature, pressure, chemical environment (e.g., pH), 
and the concentration of substrate. Some enzymes are used 
commercially, for example, in the synthesis of antibiotics. In 
addition, some household products use enzymes to speed up 
biochemical reactions (e.g., enzymes in biological washing 
powders break down protein or fat stains on clothes; 
enzymes in meat tenderizers break down proteins into 
smaller molecules, making the meat easier to chew.    
Rational design, the earliest approach applied to the 
modification of enzymes [3-5], requires the availability of 
detailed structural information and catalytic mechanism of 
the targets. Computational tools have been developed to deal 
with a large number of data produced in rational enzyme 
design. In the meanwhile, such development leads to the 
emergence of “de novo computational design” approach [6], 
which commonly refers to the generation of novel protein 
scaffolds or enzymatic activity. Limited but exciting goals 
have been achieved in this field [7-9], making de novo 
computational design a promising approach in enzyme 
engineering. As another common methodology, directed 
evolution, was only applied to improve desired properties of 
enzymes recently [10, 11], but it has quickly become a 
powerful and popular tool in enzyme engineering [12]. 
Nevertheless, the bottleneck of directed evolution lies in the 
development of an efficient high-throughput screening 
technology, despite that there are quite a few successful 
examples that used directed evolution to modify important 
commercial enzymes Consequently, the combined 
approaches involving rational or de novo design with 
directed evolution may offer significant advantages over 
individual approaches [8]. 
     In paper, we highlight the strengths of a number of 
effective computational methodologies/tools that can assist 
in the rational and de novo enzyme design (see Figure 2). 
Successful examples, especially those concerning 
improvement of enzymatic activity and stability, which are 
the most important properties from a practical perspective, 
are discussed in the following respective sections. 
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Figure 1: Natural Enzyme 

II. DESIGN AND TOOLS 

The success of rational design depends on our in-depth 
knowledge about sequence and structure features of target 
proteins. A popular strategy to identify functionally related 
residues of unknown targets is the use of sequence features. 
Analysis of these features can provide enough information 
about evolutionary relationship, functional sites, correlated 
mutations and so on. The most useful tools for extracting 
sequence information are multiple sequence alignment 
(MSA) and coevolutionary analysis while the latter 
sometimes requires structural information. As a matter of 
fact, structure-based design is no doubt more efficient to 
locate key residues, because the execution of the protein 
function is directly linked with the maintenance of the 3D 
structure in functionally related regions. Structure-based 
rational design can benefit considerably from the rapidly 
growing number of solved protein structures, however, these 
account for only a small portion of naturally occurring 
proteins. To make a better use of structural information, 3D 
structure prediction or analysis tools are extremely 
important and greatly desired. Fortunately, a variety of 
computational methodologies/tools have been available to 
facilitate processing and data analysis, which have 
significantly contributed to the progress of rational enzyme 
design. Among them, several noteworthy tools are discussed 
below. 

III. CO EVOLUTIONARY ANALYSIS 

Coevolution (also known as covariation, correlated mutation 
or co-substitution) refers to “reciprocal evolutionary change 
in evolutionarily interacting loci” [43], and occurs at many 
levels in biologyIn this review, only the correlated mutations 
between amino acids within a protein are discussed. 
Coevolutionary analysis methods have a number of 
important applications in the prediction of protein structure 
identification of functional sites and candidate design sites 
The identified coevolving residues have been 
experimentally validated in some studies implying the 
potential application of coevolutionary analysis in rational 
enzyme design. 
In the past few decades, a number of coevolutionary 
analysis algorithms have been developed [56]. These 
methods share a common procedure of three steps: MSA 
construction, coevolutionary measure calculation and 
experimental validation. Most coevolutionary analyses start 
with the construction of an MSA of the query protein. 
Although certain automatic software can be applied (see 
Table 1), manual refinement, including filtering of 
sequences with large gaps, low homology or wrong 
annotation, is often required to ensure a high- quality MSA 
[57]. The second step is to calculate coevolutionary 

measures, which can be done by using different correlated 
mutation algorithms, followed by statistical significance 
tests and analyses to extract significant convolution values, 
eliminate background noise [58] and evaluate the 
performance and robustness of the convolution measures 
[59]. Finally, “wet” experiments need to be performed to 
validate the obtained co evolutionary results.   For 
experimental scientists, co evolutionary web servers seem to 
be more straightforward, attractive and practical. Up to now, 
several online tools have been made publicly available [56, 
60]. However, how to choose an optimal scoring function of 
co evolutionary measures in the second step remains to be a 
critical factor that will determine the quality of co 
evolutionary analysis. To address this, Fodor et al. [61] 
assessed the performance of four different methods in 
detecting co evolutionary site, namely Statistical Coupling 
Analysis (SCA) [62], Observed Minus Expected Squared 
(OMES) [63], McMahan Based Substitution correlation 
(McBASC) [64] and Mutual Information (MI) [57]. In their 
research, OMES and McBASC were found to outperform 
the other two algorithms in favoring poorly conserved 
residue pairs and decreasing sensitivity to background 
conservation, and were of considerable similarity in 
Sensitivity to background noise. The OMES-based 
programs, OMES-KASS [63] and Fodor package [61], 
which were more recently developed, have been applied to 
perform reliable co evolutionary analysis . 
Yip et al. developed an integrated online program by 
embedding several coevolutionary algorithms into one 
system instead of using a single algorithm only. These 
algorithms include SCA, MI, Explicit Likelihood of Subset 
Variation (ELSC) [68] and correlation-based methods [64, 
69], making this system a convenient comparative analysis 
tool of different co evolutionary methods. The integrated 
system also provides an MSA preprocessing option to 
further improve its performance. In addition, users can also 
choose to treat the gaps in the MSA as noise or as an 
additional 21st residue, based on the observation that gaps 
might contain important co evolutionary information [60].    
Despite the functional significance, how to combine co 
evolutionary analysis with rational enzyme design remains a 
challenging issue. In 2011, Zeng and colleagues applied 
SCA to analyze the sequences of the regulatory domains of 
the aspartokinase (AK) family to characterize the allotter 
interaction network [53] and integrated such information 
with rational enzyme design. AK is the central enzyme in 
the biosynthesis of aspartate family amino acids, and the 
allotter inhibition of AK by end-products obstructs the[70]. 
As a result, their co evolutionary analysis of 500 sequences 
from the AK family identified 25 highly correlated 
positions, in which 14 sites were mutated to construct AK 
mutants of C.glutamicum. All the mutants showed resistance 
to allosteric inhibition to different extents, suggesting that 
the choice of target mutations was largely successful. In this 
study, a major strategy was to select residues that had the 
potential to interrupt allosteric interaction, whereas in 
researches that aim to modify other properties of enzymes, 
amino acidsites that regulate the target property can 
probably be selected as candidates according to expert 
knowledge or structural analysis. There were two general 
rules to mutate the wild-type amino acids at the selected 
sites: (i) mutating the wild-type amino acids to those with 
less usage frequency at the corresponding positions; (ii) or 
substituting the wild- type amino acids by those with 
different chemical properties with the purpose of making 
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more obvious changes in terms of the target properties [53]. 
In another work of Chen and co-workers, AK3 from 
Escherichia coli was investigated via an integrative analysis 
of convolution and molecular dynamics (MD) [71]. 

IV. D STRUCTURE OF PROTEIN 

There are an increasing number of proteins with high-
resolution solved 3D structures, greatly facilitating the 
rational and computational protein design. Numerous 
previous successes have shown that when 3D structural 
information is available, protein design can be much more 
precise and accurate [18, 72, 73]. It is apparent that the 
knowledge of 3D structure of the target enzyme is a 
prerequisite and foundation for structure-based design. 
Although only a small portion of proteins have authentic 
crystal structures, those with unknown structure information 
can be reliably modeled via protein 3D structure prediction 
software, provided that there is a known structure of one or 
several homologous proteins to the target protein [74, 75]. 
According to the availability of template structures, protein 
3D structure prediction can be generally divided into two 
categories: homology modelling and ab initio modelling. 
The former refers to the construction of an atomic-resolution 
model of a protein from its primary sequence using the 

experimentally solved 3D structure of a homologous protein 
as the “template”, while the latter is called “free modelling” 
or “de novo modelling” in some cases, referring to 3D 
structure prediction generated from scratch when structural 
analogs are not available or detectable. The majority of 
methods used in homology modelling can be further 
grouped into two types: comparative modelling (CM) [76] 
and threading [77]. The root mean square deviation (rmsd) 
of a CM constructed model from the structure obtained from 
experiments can usually achieve 1–2 Å when a highly 
homologous (>30% sequence identity) template is 
employed. Models with such accuracy can compete with the 
low- resolution X-ray or medium-resolution NMR structures 
[78]. In contrast, the threading approach usually has a 
remarkable performance when dealing with target protein 
modelling using relatively distant templates, and the 
corresponding rmsd is 2-6Å [79] with most errors occurring 
in loops. Ab initio modelling, however, continues to be the 
most challenging topic in protein 3D structure prediction. 
Although there has been an exciting progress in modelling 
small proteins, no substantial progress has been achieved in 
de novo structure prediction of proteins with more than 150 
residues [80]. In view of this, we mainly focus on the 
homology modelling methods in this mini-review. 

 
 

Figure 2 . Strategies of rational and de novo enzyme design 
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By submitting an amino acid sequence or its UniProtID, 
users start the modelling procedure with or without 
providing a template protein. Swiss-Model server can 
automatically select several suitable templates from a 
refined library derived from the Protein Data Bank (PDB), 
and then a structural alignment between the target and the 
template is generated and improved for the sake of 
modelling [87]. A pH sensitive member Kir2.3 was aligned 
with all the Kir2 channel proteins, and histidine 117 (H117) 
located close to the putative selectivity filter was identified 
to contribute to pH sensitive phenotype [91]. However, 
contradictory results were obtained by directed mutagenesis 
experiments, suggesting that there were other factors related 
to the pH effect. The observation that the ability of Zn2+ to 
bind cysteines/histidines could inhibit the pH effect 
indicated that a cysteine within atomic distance to H117 
might interact to exert this functional effect. Consequently, 
the 3D structure of Kir2.3 was created by Swiss-Model 
using distant templates in order to narrow down the range 
and locate the target cysteine.. The active sites of the 
predicted structure were then superimposed on the template 
and indicated that the spatial orientation of D199 in the 
target EH was different from its counterpart in the template. 
Attempts to modify D199 into a proper orientation were also 
made to redesign the surrounding residues so that they could 
have direct or indirect interactions with D199. To achieve 
this, F193 and Y194 were chosen, and the 3D structures of 
various mutants of these two residues were constructed by 
Swiss-Model instead of “wet” experiments. Analysis of the 
corresponding 3D structures, particularly 

V. DE NOVO COMPUTATIONAL DESIGN 

The ultimate test of our understanding of the mechanism of 
enzymatic catalysis is de novo computational design, which 
refers to creation of novel protein folds, substrate binding 
pockets, and catalytic activities and so on. De novo protein 
design was first conducted to create a four-helix bundle 
protein in 1988 [6]. Since then, various protein folds have 
been de novo designed [100]. However, only a few 
possessed catalytic functions. Accordingly, de novo 
computational design of naturally occurring enzymes with 
novel catalytic activity is considered as a grand challenge, 
and in recent years, great efforts in this field have been 
made to expand our knowledge in enzyme engineering [7-9, 
101-103]. To illustrate this, in this section we discuss three 
distinguished design examples of enzymes that catalyze 
synthetic reactions. The overwhelming performance of 
enzymatic catalysis over chemical catalysis is partly due to 
the free energy decrease of transition state (TS) via the 
interaction with catalytic residues [104]. Hence, the first 
step of de novo design for a given reaction is to model its 
theozyme which consists of TS model and catalytic groups 
[105] based on quantum chemical calculations [106]. How 
well the the ozyme models correlate with their 
corresponding crystal structures, will have a significant 
influence on the ultimate designs. Dechancie et al. 
mimicked the active sites of nine distinct enzymes with 
quantum mechanical optimizations [107]. The rmsd of the 
sets of catalytic atoms was 0.64Å, suggesting that the 
predicted geometries were remarkably consistent with the 
corresponding X-ray structure. For a desired reaction, there 
usually exist more than one possible catalytic mechanism. 
As result, the 3D models of each catalytic motif for each 
mechanism will have to be built, and hence the degree of 

freedom and the orientation of different bonds in each model 
can vary greatly, giving rise to a great number of possible 
3D active sites, which are called “theozyme library”.     The 
search for optimal protein scaffolds that are able to fulfill a 
target reaction can be launched once the theozyme library 
has been generated. Numerous scaffolds with ligand-binding 
cavities and high- resolution X-ray structures are available 
in several public protein databases. If there are certain 
restrictions on potential scaffolds, for example, in cases 
where a thermophilic scaffold is required, the selection 
range could be narrowed down. However, this process 
depends on de novo design algorithms such as Rosetta 
Match [108] that relies on hashing techniques and pruning 
of the majority of potential active centers at a very high 
speed but very little cost. At this step, the description of TS 
and a set of protein scaffolds are input into Rosetta Match. 
Once a TS position is compatible with the geometry of 
catalytic sites in one scaffold and satisfies other catalytic 
constraints, the result will be output as a “match” [106, 108]. 
Because there are still substantial candidate matches after 
the scaffold selection, and there remain certain steric clashes 
between the TS position and the catalytic side chains in the 
matches, further optimization is necessary. In this regard, 
the Rosetta Design methodology [109] can be applied to 
improve the binding affinity to TS and the stability of the 
active centers by redesigning or repacking of related 
residues. It is suggested that users run a single task for ten 
times owing to astochastic sampling algorithm adopted by 
Rosetta Design which will probably produce 10 distinct 
outputs. The resulting designs are supposed to be lower 
energy sequences for a given scaffold with the maximized 
TS affinity. 
After optimizing all unique matches, a next step is to select 
designs with optimal performance for experimental 
validation. Several important factors, especially the ligand 
binding energy feature, are often used to evaluate and rank 
all the designs as described in [106]. As it is unlikely that a 
design has the highest score for each factor, extensive 
examinations to assist in further selection are preferred. In 
addition, Kiss et al. found that the MD technology was the 
most effective procedure for predicting the catalytic 
potentiality of designs [110]. 
The same protein scaffolds can execute diverse functions, 
such as α/β–barrel motif, which constitutes approximately 
10% of proteins that perform a wide range of catalytic 
reactions [111]. This indicates that the designable 
potentiality of certain scaffolds underlies the foundation of 
computational engineering of novel functions. With similar 
strategies, Baker’s group has performed a series of 
pioneering studies in redesigning enzymes that catalyze 
retro-aldol reaction [7], Kemp elimination [8] and Diels-
Alder reaction [9].The enhancement of target reactions by 
designed enzymes was assessed by the ratio of the catalytic 
rate constant and uncatalyzed rate constant kcat/kuncat. In 
the above cases, the values of kcat/kuncat ranged from 102 
to105 for the most active designs, indicating the 
effectiveness of such design strategies. De novo 
computational enzyme design provides important insights 
into the structure-function relationship of the enzyme and 
the starting points for directed evolution and rational design. 
Considerable experimental efforts, including development 
of technologies discussed in the Rational design strategies 
and tools section, were made to enhance the activities of the 
artificial Kemp eliminases [112-114]. Subsequent crystal 
and experimental data confirmed the accuracy of the 
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predicted model and an apparently increased activity. These 
examples discussed above highlight the importance and 
complimentarily of these alternative de novo design 

strategies, whichcan be applied to similar scaffold-based 
studies. 

VI. CONCLUSION 

The aim of this paper to provide a useful guide on the 
selection of the basic design methodologies and tools that 
are frequently employed in enzyme engineering (Table 1), 
and a brief summary of these aforementioned examples is 
depicted in Table 2. For many naturally occurring enzymes, 
it is often necessary to modify 
and design their properties in order to meet the needs of 
commercial or industrial applications. Bioinformatic 
strategies and tools, particularly those with freely accessible 
webservers, offer biologists tremendous help to narrow 
down their experimental efforts.     MSA can efficiently 
identify consensus, highly conserved and variable positions 
within a family of homologous proteins, while MSA-based 
coevolutionary analysis of a set of enzymes with similar 
functions provide critical clues about catalytic and other 
functionally related residues. 
with the increasing availability of high-quality 3D structures 
in the PDB, there are a growing number of structure-based 
approaches being developed. Because experimentally solved 
structures only cover a limited portion of the protein 
repertoire, sequence-based 3D structure prediction has 
become a prevalent methodology in enzyme engineering. 
This is important, because reliable prediction of protein 
structure can still provide valuable information regarding 
potential candidate sites whose mutations might lead to 
improved properties of the enzyme, even if its real structural 
information is not at hand. As a symbol of the engineering 
of the third wave of biocatalysts [119], de novo enzyme 
design has achieved a significant success in the last 20 
years. Despite these advances, there are challenges for 

rational enzyme design. A first challenge is that there are 
inevitable experimental errors in “wet” experiments [120], 
resulting in less reliable designs based on such low-quality 
data.  
A second challenge is related to the conformational dynamic 
nature of the enzyme. Conformational changes of the 
enzyme are frequently occurring under catalytic conditions, 
leading to a deviation of the real orientation of residues and 
enzyme structure from that of the designed or modeled 
enzymes. A third challenge is how to select the most 
appropriate tool that best suits the study of a particular target 
enzyme, from a pool of different tools that have both pros 
and cons. In this mini-review, we attempt to 
provide a useful guide to summarize some of the popular, 
reliable and academic free tools. Moreover, many examples 
have proved that integrative strategies can usually 
outperform individuals. In this regard, development of meta-
servers is promising for providing a better performance and 
reliability of computation design. A fourth challenge is that 
some modified catalysts still cannot meet the practical needs 
of large-scale applications, particularly de novo designed 
enzymes. As such, there is often a need for assistance of 
experimental approaches, such as directed evolution. In fact, 
the boundary of rational design and directed evolution has 
become more and more blurred in practical applications, as 
evidenced by a number of recent studies that involve a 
combination of both [5]. Therefore, improving experimental 
techniques, such as high-quality mutagenesis and high-
throughput screening, is another related future direction. 
Due to the aforementioned challenges, many attempts of 
computational protein design failed. However, future 
development of the field will be advanced by a better 
understanding of the underlying reasons that led to both 
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failures and successes [121]. Recent advances in 
computational enzyme design have largely expedited the 
evolution of enzymes, and have greatly revolutionized the 
way of enzyme engineering. With the development of 
improved experimental techniques, computational enzyme 
design will gain a momentum and achieve significant 
successes in the future. 
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