International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 — 8958, Volume-3, Issue-4, April 2014

Computational Methods for Enzyme Design and Its
Biological Significance

Prabodh Sarmah, Devajit Mahanta

Abstract: Enzymes are large biological molecules responsible for
the thousands of metabolic processes that sustain life. They are
highly selective catalysts, greatly accelerating both the rate and
specificity of metabolic reactions, from the digestion of food to
the synthesis of DNA. Most enzymes are proteins, although some
catalytic RNA molecules have been identified. Enzymes adopt a
specific three-dimensional structure, and may employ organic
(e.g. biotin) and inorganic (e.g. magnesium ion) cofactors to
assist in catalysis. Multiple experimental approaches have been
applied to generate nearly all possible mutations of target
enzymes, allowing the identification of desirable variants with
improved properties to meet the practical needs. Meanwhile, an
increasing number of computational methods have been
developed to assist in the modification of enzymes during the past
few decades. With the development of bioinformatics algorithms,
computational approaches are now able to provide more precise
guidance for enzyme engineering and make it more efficient and
less laborious. In this review, we summarize the recent advances
of method development with significant biological outcomes to
provide important insights into successful computational protein
designs.
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. INTRODUCTION

Enzymes are large biological molecules respondiniehe
thousands of metabolic processes that sustair1li2]
They are highly selective catalysts, greatly acedileg both
the rate and specificity of metabolic reactiongnir the
digestion of food to the synthesis of DNA. Most ymes
are proteins, although some catalytic RNA molectlage
been identified. Enzymes adopt a specific threeedsional

As with all catalysts, enzymes are not consumedthay
reactions they catalyze, nor do they alter the libgiuim of
these reactions. However, enzymes do differ fromstmo
other catalysts in that they are highly specific fbeir
substrates. Enzymes are known to catalyze aboui04,0
biochemical reactions.[3] A few RNA molecules cdlle
ribozymes also catalyze reactions, with an impartan
example being some parts of the ribosome.[4][5]t!Sstic
molecules called artificial enzymes also displagyene-like
catalysis.[6]

Enzyme activity can be affected by other molecules.
Inhibitors are molecules that decrease enzyme iggtiv
activators are molecules that increase activitynidrugs
and poisons are enzyme inhibitors. Activity is adgfected

by temperature, pressure, chemical environment, (pH),
and the concentration of substrate. Some enzyneessad
commercially, for example, in the synthesis of laiotics. In
addition, some household products use enzymeseedspp
biochemical reactions (e.g., enzymes in biologiwashing
powders break down protein or fat stains on clgthes
enzymes in meat tenderizers break down proteing int
smaller molecules, making the meat easier to chew.
Rational design, the earliest approach applied he t
modification of enzymes [3-5], requires the avaligb of
detailed structural information and catalytic metdken of
the targets. Computational tools have been devdlapdeal
with a large number of data produced in rationatyeme
design. In the meanwhile, such development leadthéo
emergence of “de novo computational design” apgrdél
which commonly refers to the generation of novedtein

structure, and may employ organic (e.g. biotin) angcaffolds or enzymatic activity. Limited but exoii goals

inorganic (e.g. magnesium ion) cofactors to assist
catalysis.

In enzymatic reactions, the molecules at the beéginaf the
process, called substrates, are converted intoerdiit
molecules, called products. Almost all chemicattieas in
a biological cell need enzymes in order to occuradgs
sufficient for life. Since enzymes are selective fbeir
substrates and speed up only a few reactions frmong

have been achieved in this field [7-9], making d®/am
computational design a promising approach in enzyme
engineering. As another common methodology, ditecte
evolution, was only applied to improve desired migs of
enzymes recently [10, 11], but it has quickly beeom
powerful and popular tool in enzyme engineering].[12
Nevertheless, the bottleneck of directed evolulies in the
development of an efficient high-throughput scragni

many possibilities, the set of enzymes made in th cdechnology, despite that there are quite a few essfal

determines which metabolic pathways occur in teédt c
Like all catalysts, enzymes work by lowering théation
energy (Eaf) for a reaction, thus dramatically éasing the
rate of the reaction. As a result, products arenéat faster
and reactions reach their equilibrium state mongidig.
Most enzyme reaction rates are millions of timetdathan
those of comparable un-catalyzed reactions.

Manuscript received on April 2014.

examples that used directed evolution to modify angmt
commercial enzymes Consequently, the combined
approaches involving rational or de novo designhwit
directed evolution may offer significant advantageser
individual approaches [8].

In paper, we highlight the strengths of a namiof
effective computational methodologies/tools that easist
in the rational and de novo enzyme design (seer&ig
Successful examples, especially those concerning
improvement of enzymatic activity and stability, iat are
the most important properties from a practical pective,
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Figure 1: Natural Enzyme

II. DESIGN AND TOOLS

The success of rational design depends on our pihde
knowledge about sequence and structure featuréargét
proteins. A popular strategy to identify functiogalelated
residues of unknown targets is the use of sequieateres.
Analysis of these features can provide enough imépion
about evolutionary relationship, functional sitesyrelated
mutations and so on. The most useful tools foragkitng

measures, which can be done by using differentetadad
mutation algorithms, followed by statistical sigo#ince
tests and analyses to extract significant convatutialues,
eliminate background noise [58] and evaluate the
performance and robustness of the convolution measu
[59]. Finally, “wet” experiments need to be perfaunto
validate the obtained co evolutionary results. r Fo
experimental scientists, co evolutionary web sergeem to
be more straightforward, attractive and practithl.to now,
several online tools have been made publicly alvkl§56,
60]. However, how to choose an optimal scoring fiamcof

co evolutionary measures in the second step renaibs a
critical factor that will determine the quality oo
evolutionary analysis. To address this, Fodor et[@il]
assessed the performance of four different methiods
detecting co evolutionary site, namely StatistiCalupling
Analysis (SCA) [62], Observed Minus Expected Sqdare
(OMES) [63], McMahan Based Substitution correlation
(McBASC) [64] and Mutual Information (MI) [57]. Itheir
research, OMES and McBASC were found to outperform
the other two algorithms in favoring poorly consv

sequence information are multiple sequence alighmeresidue pairs and decreasing sensitivity to baakugo

(MSA) and coevolutionary analysis while the
sometimes requires structural information. As atenadf
fact, structure-based design is no doubt more iefficto
locate key residues, because the execution of thieip
function is directly linked with the maintenance tbé 3D
structure in functionally related regions. Struetbased
rational design can benefit considerably from thpidly
growing number of solved protein structures, howgthese
account for only a small portion of naturally oatug
proteins. To make a better use of structural infdrom, 3D
structure prediction or analysis tools are extrgmel
important and greatly desired. Fortunately, a varief
computational methodologies/tools have been auailéad
facilitate processing and data analysis,
significantly contributed to the progress of raibenzyme
design. Among them, several noteworthy tools asewtised
below.

Ill. CO EVOLUTIONARY ANALYSIS

Coevolution (also known as covariation, correlatagation
or co-substitution) refers to “reciprocal evolutay change
in evolutionarily interacting loci” [43], and ocauat many
levels in biologyln this review, only the correldtemutations
between amino acids within a protein are discusse
Coevolutionary analysis methods have a number
important applications in the prediction of protsinucture
identification of functional sites and candidatesida sites
The identified coevolving residues have bee
experimentally validated in some studies implyinge t
potential application of coevolutionary analysisrational
enzyme design.

In the past few decades, a number of coevolutiona
analysis algorithms have been developed [56].

latterconservation,

and were of considerable similarity i
Sensitivity to background noise. The OMES-based
programs, OMES-KASS [63] and Fodor package [61],
which were more recently developed, have been egpt
perform reliable co evolutionary analysis .

Yip et al. developed an integrated online prograyn b
embedding several coevolutionary algorithms intoe on
system instead of using a single algorithm onlyesenh
algorithms include SCA, Ml, Explicit Likelihood ddubset
Variation (ELSC) [68] and correlation-based meth{gis,
69], making this system a convenient comparativelyais
tool of different co evolutionary methods. The grated
system also provides an MSA preprocessing option to

which haviarther improve its performance. In addition, useas also

choose to treat the gaps in the MSA as noise oaras
additional 21' residue, based on the observation that gaps
might contain important co evolutionary informati¢@0].
Despite the functional significance, how to combice
evolutionary analysis with rational enzyme desigmains a
challenging issue. In 2011, Zeng and colleaguediezbp
SCA to analyze the sequences of the regulatory ohentd
the aspartokinase (AK) family to characterize thiettr
interaction network [53] and integrated such infation
yith rational enzyme design. AK is the central eneyin
e biosynthesis of aspartate family amino acidsl the
allotter inhibition of AK by end-products obstrudtse[70].
As a result, their co evolutionary analysis of S@@uences

from the AK family identified 25 highly correlated

positions, in which 14 sites were mutated to camstAK
mutants of C.glutamicum. All the mutants showedstaace
to allosteric inhibition to different extents, segging that
me choice of target mutations was largely sucosist this

ThesStidy, a major strategy was to select residuesttadtthe

methods share a common procedure of three steps vgotential to interrupt allosteric interaction, weas in
construction, coevolutionary measure calculationd arf€S€arches that aim to modify other propertiesnaymes,

experimental validation. Most coevolutionary analystart amino acidsites that regulate the target propery c
with the construction of an MSA of the query pratei probably be selected as candidates according t@rexp

Although certain automatic software can be applisee knowledge or structural analysis. There were twoegal

Table 1), manual refinement, including filtering of
sequences with large gaps, low homology or wron
annotation, is often required to ensure a highdityusISA

[57]. The second step is to calculate coevolutipna

397

rules to mutate the wild-type amino acids at thiected
ites: (i) mutating the wild-type amino acids t@th with
ess usage frequency at the corresponding positi@h®r

;Substituting the wild- type amino acids by thosethwi

different chemical properties with the purpose dadking
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more obvious changes in terms of the target prigsef53]. experimentally solved 3D structure of a homologpratein
In another work of Chen and co-workers, AK3 fromas the “template”, while the latter is called “fre@delling”
Escherichia coli was investigated via an integmtwalysis or “de novo modelling” in some cases, referring 3D
of convolution and molecular dynamics (MD) [71]. structure prediction generated from scratch wheucstral
analogs are not available or detectable. The ntgjard
methods used in homology modelling can be further
grouped into two types: comparative modelling (CVi§]
and threading [77]. The root mean square deviafiorsd)

a CM constructed model from the structure olgdifrom
xperiments can usually achieve 1-2 A when a highly
omologous (>30% sequence identity) template is

employed. Models with such accuracy can compete tlui
l[ow- resolution X-ray or medium-resolution NMR sttures

8]. In contrast, the threading approach usualgs ta

remarkable performance when dealing with targetegmo
modelling using relatively distant templates, anke t
corresponding rmsd is 2-6A [79] with most errorswcing
in loops. Ab initio modelling, however, continues lie the
most challenging topic in protein 3D structure pecédn.
Although there has been an exciting progress inatfiad
small proteins, no substantial progress has beleiead in
de novo structure prediction of proteins with mtran 150
residues [80]. In view of this, we mainly focus o¢me
homology modelling methods in this mini-review.

IV. D STRUCTURE OF PROTEIN

There are an increasing number of proteins withh-ig
resolution solved 3D structures, greatly facilitgti the
rational and computational protein design. Numero
previous successes have shown that when 3D stalict
information is available, protein design can be muwore
precise and accurate [18, 72, 73]. It is apparkat the
knowledge of 3D structure of the target enzyme is
prerequisite and foundation for structure-basedigdes
Although only a small portion of proteins have aurttic
crystal structures, those with unknown structuferimation
can be reliably modeled via protein 3D structuredpstion
software, provided that there is a known structifrene or
several homologous proteins to the target protéin 75].
According to the availability of template structsygrotein
3D structure prediction can be generally dividetb itwo
categories: homology modelling and ab initio madell
The former refers to the construction of an atoresslution
model of a protein from its primary sequence usihg

 Design from enzymes with initial activity

Theozyme modeling

1

Scaffolds selection
Energy optimization

Ranking design results
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Figure 2 . Strategies of rational and de novo enzyendesign

Table 1. Summary of uscful computational programs in rational design referred in this review.

Programs Application URL address Opcrating system Rcf.
Ratiomal design programs
Cluseal™or TChe s i m s e Vet L 0 b o L) e s 27, 122]
ClusealCrnmega htrp=fivearer.cluscal.orgfamegat o= T o]
iple sequence alignmen e W indows, Lin
TeEafFe e =i = hrep=fmarfe. chre. jp! Tt B [32. 37. 39]
T-Coffce hrepe e e offoe orgd Projccrs e ffeed. Linux. Macs r1231
_ ) W indows, Linus.
Befuscle hpaifwesrerdeive S.comdmuscled o [33]
Int eod systerm i e il A e Lso]
emrarcd =y eep= =ty
OMMES-KASS Coacvalutionany: analysis hp/bipoweizmann.ac.il/correlated _mutations’ Limux 53]
rindows. Linux
Fodor paclkage hrepafimane afodor. nee o rs1]
Sy htepeffarissmodol. cxpasy acg = [124. 125]
HHpred2 B scructure predicdon hepsffroolkic. cuchingen.m ps.de/hb prod = [
T TASSER hpefizhanglab.comb.med . umichcduw/ L TASSERS Limusx (=4, 125]
indows, Linus.,
FoldX herpadffalds.crg.ead o o6, 1271
PophfuSic hiep=fibabylonc.ulb.ac.be/popmusic = (94, 97, 128])
Proccin seabiling predicrion N il .
e hups//aper2 biocome. unibo. iuogh prodicror/ T M uran 3.0/ 1 _ (exa]
e e -
D hfucans heepsisparks. informarics fupui.cdu/hrhoufmurasion. heml = [1301
D mops design programs
Roscerabdarch Scaffold search = r1o=]
Proccin design for low froc

RosceeaDesige

OREBIT

erermy sequences
timal sequences search for
given folds

[1o9]

[118]

398 Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.




Computational Methods for Enzyme Design and lIts Bimgical Significance

By submitting an amino acid sequence or its UniProt

freedom and the orientation of different bondsantemodel

users start the modelling procedure with or withoutan vary greatly, giving rise to a great numbempossible
providing a template protein. Swiss-Model servem ca3D active sites, which are called “theozyme libfary The

automatically select several suitable templatesmfra
refined library derived from the Protein Data BgRDB),
and then a structural alignment between the taagdtthe
template is generated and improved for the sake
modelling [87]. A pH sensitive member Kir2.3 wagyakd
with all the Kir2 channel proteins, and histidink71(H117)
located close to the putative selectivity filtersaidentified
to contribute to pH sensitive phenotype [91]. Hoerv
contradictory results were obtained by directedagenesis
experiments, suggesting that there were other iacetated
to the pH effect. The observation that the abiifyZn2+ to
bind cysteines/histidines could inhibit the pH effe
indicated that a cysteine within atomic distanceHbl7
might interact to exert this functional effect. Gequently,

search for optimal protein scaffolds that are abléulfill a
target reaction can be launched once the theoziprery

has been generated. Numerous scaffolds with ligpamding
oawvities and high- resolution X-ray structures available

in several public protein databases. If there aggamn
restrictions on potential scaffolds, for example, dases
where a thermophilic scaffold is required, the ctd:
range could be narrowed down. However, this process
depends on de novo design algorithms such as Rosett
Match [108] that relies on hashing techniques andipg

of the majority of potential active centers at ayvéigh
speed but very little cost. At this step, the digsiom of TS

and a set of protein scaffolds are input into Rasktatch.
Once a TS position is compatible with the geomeify

the 3D structure of Kir2.3 was created by Swiss-Blod catalytic sites in one scaffold and satisfies otbatalytic

using distant templates in order to narrow down rdmege
and locate the target cysteine.. The active sitbeghe
predicted structure were then superimposed oneitmplate
and indicated that the spatial orientation of DI1f9the
target EH was different from its counterpart in template.
Attempts to modify D199 into a proper orientatioare also
made to redesign the surrounding residues solthgtdould
have direct or indirect interactions with D199. &chieve
this, F193 and Y194 were chosen, and the 3D strestaf
various mutants of these two residues were coristiucy
Swiss-Model instead of “wet” experiments. Analysisthe
corresponding 3D structures, particularly

V. DE NOVO COMPUTATIONAL DESIGN

The ultimate test of our understanding of the maism of
enzymatic catalysis is de novo computational desidrich
refers to creation of novel protein folds, substrbinding
pockets, and catalytic activities and so on. Deonprotein
design was first conducted to create a four-helixdie
protein in 1988 [6]. Since then, various proteitdfohave
been de novo designed [100].
possessed catalytic functions. Accordingly,
computational design of naturally occurring enzymeth

novel catalytic activity is considered as a grahdlienge,

and in recent years, great efforts in this field/ehdeen
made to expand our knowledge in enzyme engine§rigy

101-103]. To illustrate this, in this section wedaliss three
distinguished design examples of enzymes that yzaal
synthetic reactions. The overwhelming performande
enzymatic catalysis over chemical catalysis islpalte to

the free energy decrease of transition state (Ti8)the

interaction with catalytic residues [104]. Henche ffirst

step of de novo design for a given reaction is toeh its

theozyme which consists of TS model and catalytaugs

[105] based on quantum chemical calculations [16®&jw
well the the ozyme models correlate with
corresponding crystal structures, will have a digant
influence on the ultimate designs. Dechancie et
mimicked the active sites of nine distinct enzynweith
guantum mechanical optimizations [107]. The rmsdhaf
sets of catalytic atoms was 0.64A, suggesting that
predicted geometries were remarkably consistent it
corresponding X-ray structure. For a desired reactihere
usually exist more than one possible catalytic raagm.
As result, the 3D models of each catalytic motif &ach
mechanism will have to be built, and hence the elegf

399

However, only a fe
de novB

éplOS for

constraints, the result will be output as a “matd©6, 108].
Because there are still substantial candidate reatefter
the scaffold selection, and there remain certaricstlashes
between the TS position and the catalytic sidenshai the
matches, further optimization is necessary. In teigard,
the Rosetta Design methodology [109] can be appied
improve the binding affinity to TS and the staliltf the
active centers by redesigning or repacking of eelat
residues. It is suggested that users run a siagle for ten
times owing to astochastic sampling algorithm addpby
Rosetta Design which will probably produce 10 disti
outputs. The resulting designs are supposed tootverl
energy sequences for a given scaffold with the mepead
TS affinity.

After optimizing all unique matches, a next stepoiselect
designs with optimal performance for experimental
validation. Several important factors, especiahg tigand
binding energy feature, are often used to evalaaterank
all the designs as described in [106]. As it isket) that a
design has the highest score for each factor, sixten
\ﬁxaminations to assist in further selection ardepred. In
ddition, Kiss et al. found that the MD technologgs the
most effective procedure for predicting the catalyt
potentiality of designs [110].

The same protein scaffolds can execute diverseting;
such asa/p—barrel motif, which constitutes approximately
10% of proteins that perform a wide range of cdialy
reactions [111]. This indicates that the designable
(Potentiality of certain scaffolds underlies the ridation of
computational engineering of novel functions. Wsimilar
strategies, Baker's group has performed a series of
pioneering studies in redesigning enzymes thatlyzga
retro-aldol reaction [7], Kemp elimination [8] aridiels-
Alder reaction [9].The enhancement of target reasctiby
designed enzymes was assessed by the ratio oathigtc

thejfate constant and uncatalyzed rate constant kecet#tuln

the above cases, the values of kcat/kuncat rarmged 102
the most active designs, indicating the
effectiveness of such design strategies. De novo
computational enzyme design provides importantgimtsi
into the structure-function relationship of the yme and
the starting points for directed evolution andaaél design.
Considerable experimental efforts, including depetent
of technologies discussed in the Rational desigategiies
and tools section, were made to enhance the aesivf the
artificial Kemp eliminases [112-114]. Subsequenystal
and experimental data confirmed the accuracy of the
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predicted model and an apparently increased actiVliese strategies, whichcan be applied to similar scaffidded
examples discussed above highlight the importanog astudies.
complimentarily of these alternative de novo design

Table 2. Summary of representative examples referred in this review.

Method Resule
Enzyme/protein Target property : Fold- Ref.
Design strategy Bisinformaric toel No. of mutants Library sire
improvement
Funcrional and activicerelared residucs
Rperatuendo- -1 dglucanase  Activity identificd via an MSA analysis of cight 7-13 24 [19]
sequences
& e posliarat : - An MSA of 100 homologues evaluared by ClustalW, ScqDist, Kaks, 6{1st round) 20%(activicy) 47(Lst round)
Activity; stabilicy : it i : R |28]
mulriple scoring functions identified mumtions  probCons, SUB
prolyl endopepridases 9{2nd round}) 200(stability} 48{2nd round}
Integrated analysis by MSA. G changes Maffe, T-Coffee, Muscle,
KDOHEY Svyathase family Stabilicy calculation, MD simularion and coevolutionary  HMMER 3.0, Prime 2.1, No experimental validation [42]
analysis Diesmond, %Cluster, FoldX
Cgluatamicien - e by
& A Torri kil L SEAbR L AP AL 7 o ey Muscle, CluscalX 1 2 14 (53]
cocvalutonary analysis of 500 sequences
aspartokinase
Leols Integrated analysic byMD simulation and : "
Allosteric inhibition __"'.‘?‘I‘_"'” i i PR A Mudeller, AMBER, Muscle 6 57 18 [71]
sfeittoliase coevolutionary analysis
M. cephalus ) .‘\Lm-r(_r-wl:?,l.:d residues were idenrified by Swiss Madel, RasMal, Desp-
Activity superimposician of a predicied strucmre and 2 1 35 5 [92]
salved seructure template
epoxide hydrolase
K. preumonia : e ieaitas s dit e L asia 2{pH stability)
- PRl ety i hted eelues were desigped Wil on o iy pipmisic 1 E 2 {93
glveeroldehydratase a prediced strucare 2(activity}
sk a 3 b 72 =1
Hetretrio! Minitian TS simrulred by QMMM was wsad for scaffald 42 A o |
Kemp climination Activiey selection and followed by individual RoserraMatch, RosermDesign 8 =10F 59 (8]
Diels-Alder reaction SpHicilat el fang 2 29M 84 (9]
L. cali PHPA Posential active sites and surrounding activesite ; i S
; e 3 ORBIT 2 180 2 [115]
mutations were identified and compuzed
thinredoxin hydrnolase
e Creating a non-hacm Fe'*-binding site based on
Sperm whale myoglobin R the predicred steucture overlaid with the VMD, NAMD 1 N.A, ] [117]

reducrase
reference strucrure

INLAL: Not Available

VI. CONCLUSION

The aim of this paper to provide a useful guide the
selection of the basic design methodologies antk ttat
are frequently employed in enzyme engineering @db|
and a brief summary of these aforementioned examgle
depicted in Table 2. For many naturally occurrimgyames,
it is often necessary to modify

and design their properties in order to meet thedaeof
commercial or industrial applications. Bioinforneati
strategies and tools, particularly those with fyemicessible
webservers, offer biologists tremendous help toravar
down their experimental efforts. MSA can etiafly
identify consensus, highly conserved and variablsitipns
within a family of homologous proteins, while MS/Aded
coevolutionary analysis of a set of enzymes withilsir
functions provide critical clues about catalyticdaather
functionally related residues.

with the increasing availability of high-quality 3&®ructures
in the PDB, there are a growing number of struchased
approaches being developed. Because experimeatdiigd
structures only cover a limited portion of the iot
repertoire, sequence-based 3D structure predictias

become a prevalent methodology in enzyme engingeri

This is important, because reliable prediction obtgin
structure can still provide valuable informatiorgaeding
potential candidate sites whose mutations might l&a
improved properties of the enzyme, even if its stalctural
information is not at hand. As a symbol of the eegring
of the third wave of biocatalysts [119], de novazyne
design has achieved a significant success in the 28

years. Despite these advances, there are challeioges
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rational enzyme design. A first challenge is thré are
inevitable experimental errors in “wet” experimefit20],
resulting in less reliable designs based on suahdeality
data.
A second challenge is related to the conformatidgabmic
nature of the enzyme. Conformational changes of the
enzyme are frequently occurring under catalyticdions,
leading to a deviation of the real orientation @$idues and
enzyme structure from that of the designed or nemtlel
enzymes. A third challenge is how to select the tmos
appropriate tool that best suits the study of éiqdar target
enzyme, from a pool of different tools that havehbpros
and cons. In this mini-review, we attempt to
provide a useful guide to summarize some of theulgop
reliable and academic free tools. Moreover, marangles
have proved that integrative strategies can usually
outperform individuals. In this regard, developmehineta-
servers is promising for providing a better perfante and
reliability of computation design. A fourth chalmis that
some modified catalysts still cannot meet the jpratheeds
of large-scale applications, particularly de nowesigned
enzymes. As such, there is often a need for assistaf
experimental approaches, such as directed evolutidiact,
he boundary of rational design and directed eimiuhas
ecome more and more blurred in practical appboati as
evidenced by a number of recent studies that irvalv
combination of both [5]. Therefore, improving exipeental
techniques, such as high-quality mutagenesis aggh- hi
throughput screening, is another related futureatiion.
Due to the aforementioned challenges, many atteropts
computational protein design failed. However, fatur
development of the field will be advanced by a drett
understanding of the underlying reasons that leddth
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failures and successes [121]. Recent advances
computational enzyme design have largely expedited
evolution of enzymes, and have greatly revolutiedizhe
way of enzyme engineering. With the development
improved experimental techniques, computationalyerz

design will gain a momentum and achieve significar

successes in the future.
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