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Abstract. Dynamic authority-based keyword search algorithms, 

such as ObjectRank and personalized PageRank, leverage 

semantic link information to provide high quality, high recall 

search in databases, and the Web. Conceptually, these 

algorithms require a query time PageRank-style iterative 

computation over the full graph. In this paper we introduce 

BinRank system which approximates ObjectRank results by 

utilizing a hybrid approach inspired by materialized views in 

traditional query processing. 
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I. INTRODUCTION 

The PageRank algorithm utilizes the Web graph link structure 

to assign global importance to Web pages. It works by 

modeling the behavior of a random Web surfer who starts at a 

random Web page and follows outgoing links with uniform 

probability. The PageRank score is independent of a keyword 

query. Recently, dynamic versions of the PageRank algorithm 

have become popular. They are characterized by a query-

specific choice of the random walk starting points. In 
particular, two algorithms have got a lot of attention: 

Personalized PageRank (PPR) and ObjectRank. PPR is a 

modification of PageRank that performs search personalized on 

a preference set that contains Web pages that a user likes. For a 

given preference set, PPR performs a very expensive fix point 

iterative computation over the entire Web graph, while it 

generates personalized search results [1].  
ObjectRank extends PPR to perform keyword search in 

databases. ObjectRank uses a query term posting list as a set of 

random walk starting points and conducts the walk on the 

instance graph of the database. The resulting system is well 

suited for “high recall” search, which exploits different 

semantic connection paths between objects in highly 
heterogeneous data sets. For example, on the Wikipedia data 

set, the full dictionary precomputation would take about a 

CPU-year [2-5]. In this paper, we introduce a BinRank system 

that employs a hybrid approach where query time can be traded 

off for preprocessing time and storage. 

II. LITERATURE SURVEY 

The issue of scalability of PPR has attracted a lot of attention. 

PPR performs a very expensive fixpoint iterative computation 
over the entire graph, while it generates personalized search 

results. To avoid the expensive iterative calculation at runtime, 

one can naively precomputes and materialize all the possible 

personalized PageRank vectors(PPV). Although this method 

guarantees fast user response time, such precomputation is 

impractical as it requires a huge amount of time and storage 

especially when done on large graphs.  
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In this section, we give overview of HubRank that integrates 

the two approaches to improve the scalability of ObjectRank 

[6].  

Hub-based approaches: Materialize only a selected subset of 

PPVs. Topic-sensitive PageRank suggests materialization of 16 

PPVs of selected topics and linearly combining them at query time. 

The personalized PageRank computation enables a finer-grained 

personalization by efficiently materializing significantly more 

PPVs and combining them using the hub decomposition theorem 

and dynamic programming techniques. However, it is still not a 

fully personalized PageRank, because it can personalize only on a 

preference set subsumed within a hub set H [7-9].  
 

Page Rank: The PageRank algorithm utilizes the Web graph 
link structure to assign global importance to Web pages. It 

works by modeling the behavior of a “random Web surfer” who 
starts at a random Web page and follows outgoing links with 

uniform probability. The PageRank score is independent of a 
keyword query. Recently, dynamic versions of the PageRank 

algorithm have become popular [10].  
Personalized Page Rank: In particular, two algorithms have 

got a lot of attention: Personalized PageRank (PPR) for Web 

graph data sets and ObjectRank for graph-modeled databases. 

PPR is a modification of PageRank that performs search 

personalized on a preference set that contains Web pages that a 

user likes. For a given preference set, PPR performs a very 

expensive fixpoint iterative computation over the entire Web 

graph, while it generates personalized search results. Therefore, 
the issue of scalability of PPR has attracted a lot of attention 

[11].  
Object Rank: ObjectRank has successfully been applied to 

databases that have social networking components, such as 

bibliographic data and collaborative product design. However, 

ObjectRank suffers from the same scalability issues as 

personalized PageRank, as it requires multiple iterations over 
all nodes and links of the entire database graph [12,13]. 

III. OBJECTIVE AND SYSTEM 

ARCHITECTURE 

The main objective of this system is that employs a hybrid 
approach where query time can be traded off for preprocessing 

time and storage. BinRank closely approximates ObjectRank 
scores by running the same ObjectRank algorithm on a small 

subgraph, instead of the full data graph. In this paper, we are 
proposing the BinRank algorithm for the trade time of search. 

Our algorithm solves the time consuming problem in query 
execution. Time will be reduced because of cache storage and 

redundant query handling method. 

3.1 System Architecture 

During query processing stage (right side of figure 1), we 

execute the ObjectRank algorithm on the subgraphs instead of 
the full graph and produce high-quality approximations of p-k 

lists at a small fraction of the cost. In order to save 

preprocessing cost and storage, each MSG is designed to 

answer multiple term queries.  
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The preprocessing stage of BinRank starts with a set of 

workload terms W for which MSGs will be materialized. If an 

actual query workload is not available, W includes the entire set 

of terms found in the corpus.  
We exclude from W all terms with posting lists longer than a 

system Parameter maxPostingList. The posting lists of these 

terms are deemed too large to be packed into bins. We execute 

ObjectRank for each such term individually and store the 

resulting top-k lists. Naturally, maxPostingList should be tuned 

so that there are relatively few of these request terms as shown 

in Fig 1. The ObjectRank module takes as input a set of bin 

posting lists B and the entire graph; EÞ with a set of 
ObjectRank parameters, the damping factor d, and the threshold 

value. The threshold determines the convergence of the 

algorithm as well as the minimum ObjectRankscore of MSG 

nodes. 

 
Fig 1 System architecture 

 
 
3.2 Query Processing 
 
For a given keyword query q, the query dispatcher retrieves 

from the Lucene index the posting list bs(q) (used as the base 

set for the Object Rank execution) and the bin identifier b(q). 

Given a bin identifier, the MSG mapper determines whether 

the 

Corresponding MSG is already in memory. If it is not, the MSG deserializer reads the MSG representation from disk. The Bin 
Rank query processing module uses all available memory as an LRU cache of MSGs. For smaller data graphs, it is possible to 
dramatically reduce MSG storage requirements by storing only a set of MS Gnodes V, and generating the corresponding set of 

edges E0 only at query time. 
 
 
3.3 Algorithm 
 

Bin Computation Algorithm  
Input: A set of workload terms W, with their posting lists  
Output: A set of bins B  

1. while W is not empty do   
2. create a new empty bin b and empty cache of candidate terms C  

3. pick term tϵW with the largest posting list size |t|   
4. while t is not null do  
5. add t to b, and remove it from W  

6. compare a set of terms T that co-occur with t  

7. for each t′ϵT do   
8. insert (or update) mapping < t′, null> into C  
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9. end   
10. for each bestI:=0  

11. for each mapping < c , i > ϵ C do   
12. if i=null then i:=|b|  
13. update mapping < c, I > in C  

14. end if  

15. union :=|b| + |c| - i  

16. if union > maxBinSize then  
17. remove < c,I > from C   
18. else if i > bestI then bestI := i, t :=c  

19. end if  

20. end for each  

21. if bestI = 0 then pick tϵW with maximum |t| ≤ maxBinSize - |b|   
22. if no such t exists, t :=null  
23. end if  

24. end while  

25. add completed b to B   
26. end while  

 
 
 
 

IV. IMPLEMENTATION 

 
4.1 List of Modules 

 
User Registration: We are providing the facility to register 

new users. If anyone wants use our application, they should 

become a member of our application. To

getting the membership login the users should made 

registration with our application. In registration we will get all 

the details about the users and it will be stored in a database to 

create membership.  
Authentication Module: This module provides the 

authentication to the users who are using our application. In 

this module we are providing the registration for new users and 

login for existing users.  
Search Query Submission: Users query will be submitted in 

this module. Users can search any kind of things in our 

application when we connect with Internet. Users query will be 

processed based on their submission, and then it will produce 

the appropriate result.  
Index Creation: Index is something like the count of search 

and result which we produced while searching. Based on the 

index we will create the rank for the results, such like pages or 

corresponding websites. This will be maintained in background 

for future use like cache memory. By the way we are creating 

the index for speed up the search efficient and fast with the 

help of implementing BinRank algorithm.  
BinRank Algorithm Implementation: We generate an MSG 

for every bin based on the intuition that a subgraph that 

contains all objects and links relevant to a set of related terms 

should have all the information needed to rank objects with 

respect to one of these terms. Based on the index creation we 

need to generate the results for the users query.  
Graph based on Rank: Graph will be generated based on the 

users queries submitted. This graph will represent the user 

search key word, number of websites produced for their search, 

how many times that websites occurred in the search result and 

the Rank for websites based on the user clicks. User may search 

the same key word again and again, so result may also produce 

as same URLs. At that user will click some of the URLs; based 

on their clicks the Rank will be calculated. Based on the 
Number of times URL occurrence, Rank and Keyword the 

Graph will generate as shown in Fig 2. 
 

 
 

Fig 2 Keyword frequency vs rank 

 

 

 

http://www.ijeat.org/


 

Effective Binrank for Scaling Dynamic Authority based Search with Materialized Sub Graphs 

4 

Published By: 

Blue Eyes Intelligence Engineering  

and Sciences Publication (BEIESP)  
© Copyright: All rights reserved. 

Retrieval Number F3267083614/14©BEIESP 

Journal Website: www.ijeat.org 

V. CONCLUSIONS 

We present a performance comparison of BinRank over Monte 

Carlo style methods and HubRank. We implemented the Monte 

Carlo algorithm 4, “MC complete path stopping at dangling 
nodes,” introduced in [5] and HubRank [8] that combines a 

hub-based approach and a Monte Carlo method called 

fingerprint. For a given keyword query, the Monte Carlo 

algorithm simulates random walks starting from nodes 

containing the keyword. Within a specified number of walks, it 

samples exactly the same number of random walks per each 

starting point.. We used our workload keyword queries and 

executed the Monte Carlo algorithm with different total 

numbers of sampled walks. As the number of sampled walks 
increases, the algorithm generates higher quality top-k lists, 

which usually takes more time. 
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