
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-3 Issue-6, August 2014

1

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number F3267083614/14©BEIESP

Journal Website: www.ijeat.org

Effective Binrank for Scaling Dynamic Authority

based Search with Materialized Sub Graphs

L Prasanna Kumar

Abstract. Dynamic authority-based keyword search algorithms,

such as ObjectRank and personalized PageRank, leverage

semantic link information to provide high quality, high recall

search in databases, and the Web. Conceptually, these

algorithms require a query time PageRank-style iterative

computation over the full graph. In this paper we introduce

BinRank system which approximates ObjectRank results by

utilizing a hybrid approach inspired by materialized views in

traditional query processing.

Keywords: World Wide Web, ObjectRank, subgraphs, BinRank

I. INTRODUCTION

The PageRank algorithm utilizes the Web graph link structure

to assign global importance to Web pages. It works by

modeling the behavior of a random Web surfer who starts at a

random Web page and follows outgoing links with uniform

probability. The PageRank score is independent of a keyword

query. Recently, dynamic versions of the PageRank algorithm

have become popular. They are characterized by a query-

specific choice of the random walk starting points. In
particular, two algorithms have got a lot of attention:

Personalized PageRank (PPR) and ObjectRank. PPR is a

modification of PageRank that performs search personalized on

a preference set that contains Web pages that a user likes. For a

given preference set, PPR performs a very expensive fix point

iterative computation over the entire Web graph, while it

generates personalized search results [1].
ObjectRank extends PPR to perform keyword search in

databases. ObjectRank uses a query term posting list as a set of

random walk starting points and conducts the walk on the

instance graph of the database. The resulting system is well

suited for “high recall” search, which exploits different

semantic connection paths between objects in highly
heterogeneous data sets. For example, on the Wikipedia data

set, the full dictionary precomputation would take about a

CPU-year [2-5]. In this paper, we introduce a BinRank system

that employs a hybrid approach where query time can be traded

off for preprocessing time and storage.

II. LITERATURE SURVEY

The issue of scalability of PPR has attracted a lot of attention.

PPR performs a very expensive fixpoint iterative computation
over the entire graph, while it generates personalized search

results. To avoid the expensive iterative calculation at runtime,

one can naively precomputes and materialize all the possible

personalized PageRank vectors(PPV). Although this method

guarantees fast user response time, such precomputation is

impractical as it requires a huge amount of time and storage

especially when done on large graphs.

Manuscript published on 30 August 2014.
* Correspondence Author (s)

L. Prasanna Kumar*, Associate Professor, Department of CSE, Dadi

Institute of Engineering & Technology, Visakhapatnam. (Andhra Pradesh),

India. E-mail id: prasannakumar@dietakp.com

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

In this section, we give overview of HubRank that integrates

the two approaches to improve the scalability of ObjectRank

[6].

Hub-based approaches: Materialize only a selected subset of

PPVs. Topic-sensitive PageRank suggests materialization of 16

PPVs of selected topics and linearly combining them at query time.

The personalized PageRank computation enables a finer-grained

personalization by efficiently materializing significantly more

PPVs and combining them using the hub decomposition theorem

and dynamic programming techniques. However, it is still not a

fully personalized PageRank, because it can personalize only on a

preference set subsumed within a hub set H [7-9].

Page Rank: The PageRank algorithm utilizes the Web graph
link structure to assign global importance to Web pages. It

works by modeling the behavior of a “random Web surfer” who
starts at a random Web page and follows outgoing links with

uniform probability. The PageRank score is independent of a
keyword query. Recently, dynamic versions of the PageRank

algorithm have become popular [10].
Personalized Page Rank: In particular, two algorithms have

got a lot of attention: Personalized PageRank (PPR) for Web

graph data sets and ObjectRank for graph-modeled databases.

PPR is a modification of PageRank that performs search

personalized on a preference set that contains Web pages that a

user likes. For a given preference set, PPR performs a very

expensive fixpoint iterative computation over the entire Web

graph, while it generates personalized search results. Therefore,
the issue of scalability of PPR has attracted a lot of attention

[11].
Object Rank: ObjectRank has successfully been applied to

databases that have social networking components, such as

bibliographic data and collaborative product design. However,

ObjectRank suffers from the same scalability issues as

personalized PageRank, as it requires multiple iterations over
all nodes and links of the entire database graph [12,13].

III. OBJECTIVE AND SYSTEM

ARCHITECTURE

The main objective of this system is that employs a hybrid
approach where query time can be traded off for preprocessing

time and storage. BinRank closely approximates ObjectRank
scores by running the same ObjectRank algorithm on a small

subgraph, instead of the full data graph. In this paper, we are
proposing the BinRank algorithm for the trade time of search.

Our algorithm solves the time consuming problem in query
execution. Time will be reduced because of cache storage and

redundant query handling method.

3.1 System Architecture

During query processing stage (right side of figure 1), we

execute the ObjectRank algorithm on the subgraphs instead of
the full graph and produce high-quality approximations of p-k

lists at a small fraction of the cost. In order to save

preprocessing cost and storage, each MSG is designed to

answer multiple term queries.

http://www.ijeat.org/
mailto:prasannakumar@dietakp.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/

Effective Binrank for Scaling Dynamic Authority based Search with Materialized Sub Graphs

2

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number F3267083614/14©BEIESP

Journal Website: www.ijeat.org

The preprocessing stage of BinRank starts with a set of

workload terms W for which MSGs will be materialized. If an

actual query workload is not available, W includes the entire set

of terms found in the corpus.
We exclude from W all terms with posting lists longer than a

system Parameter maxPostingList. The posting lists of these

terms are deemed too large to be packed into bins. We execute

ObjectRank for each such term individually and store the

resulting top-k lists. Naturally, maxPostingList should be tuned

so that there are relatively few of these request terms as shown

in Fig 1. The ObjectRank module takes as input a set of bin

posting lists B and the entire graph; EÞ with a set of
ObjectRank parameters, the damping factor d, and the threshold

value. The threshold determines the convergence of the

algorithm as well as the minimum ObjectRankscore of MSG

nodes.

Fig 1 System architecture

3.2 Query Processing

For a given keyword query q, the query dispatcher retrieves

from the Lucene index the posting list bs(q) (used as the base

set for the Object Rank execution) and the bin identifier b(q).

Given a bin identifier, the MSG mapper determines whether

the

Corresponding MSG is already in memory. If it is not, the MSG deserializer reads the MSG representation from disk. The Bin
Rank query processing module uses all available memory as an LRU cache of MSGs. For smaller data graphs, it is possible to
dramatically reduce MSG storage requirements by storing only a set of MS Gnodes V, and generating the corresponding set of

edges E0 only at query time.

3.3 Algorithm

Bin Computation Algorithm
Input: A set of workload terms W, with their posting lists
Output: A set of bins B

1. while W is not empty do
2. create a new empty bin b and empty cache of candidate terms C

3. pick term tϵW with the largest posting list size |t|
4. while t is not null do
5. add t to b, and remove it from W

6. compare a set of terms T that co-occur with t

7. for each t′ϵT do
8. insert (or update) mapping < t′, null> into C

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-3 Issue-6, August 2014

3

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number F3267083614/14©BEIESP

Journal Website: www.ijeat.org

9. end
10. for each bestI:=0

11. for each mapping < c , i > ϵ C do
12. if i=null then i:=|b|
13. update mapping < c, I > in C

14. end if

15. union :=|b| + |c| - i

16. if union > maxBinSize then
17. remove < c,I > from C
18. else if i > bestI then bestI := i, t :=c

19. end if

20. end for each

21. if bestI = 0 then pick tϵW with maximum |t| ≤ maxBinSize - |b|
22. if no such t exists, t :=null
23. end if

24. end while

25. add completed b to B
26. end while

IV. IMPLEMENTATION

4.1 List of Modules

User Registration: We are providing the facility to register

new users. If anyone wants use our application, they should

become a member of our application. To

getting the membership login the users should made

registration with our application. In registration we will get all

the details about the users and it will be stored in a database to

create membership.
Authentication Module: This module provides the

authentication to the users who are using our application. In

this module we are providing the registration for new users and

login for existing users.
Search Query Submission: Users query will be submitted in

this module. Users can search any kind of things in our

application when we connect with Internet. Users query will be

processed based on their submission, and then it will produce

the appropriate result.
Index Creation: Index is something like the count of search

and result which we produced while searching. Based on the

index we will create the rank for the results, such like pages or

corresponding websites. This will be maintained in background

for future use like cache memory. By the way we are creating

the index for speed up the search efficient and fast with the

help of implementing BinRank algorithm.
BinRank Algorithm Implementation: We generate an MSG

for every bin based on the intuition that a subgraph that

contains all objects and links relevant to a set of related terms

should have all the information needed to rank objects with

respect to one of these terms. Based on the index creation we

need to generate the results for the users query.
Graph based on Rank: Graph will be generated based on the

users queries submitted. This graph will represent the user

search key word, number of websites produced for their search,

how many times that websites occurred in the search result and

the Rank for websites based on the user clicks. User may search

the same key word again and again, so result may also produce

as same URLs. At that user will click some of the URLs; based

on their clicks the Rank will be calculated. Based on the
Number of times URL occurrence, Rank and Keyword the

Graph will generate as shown in Fig 2.

Fig 2 Keyword frequency vs rank

http://www.ijeat.org/

Effective Binrank for Scaling Dynamic Authority based Search with Materialized Sub Graphs

4

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number F3267083614/14©BEIESP

Journal Website: www.ijeat.org

V. CONCLUSIONS

We present a performance comparison of BinRank over Monte

Carlo style methods and HubRank. We implemented the Monte

Carlo algorithm 4, “MC complete path stopping at dangling
nodes,” introduced in [5] and HubRank [8] that combines a

hub-based approach and a Monte Carlo method called

fingerprint. For a given keyword query, the Monte Carlo

algorithm simulates random walks starting from nodes

containing the keyword. Within a specified number of walks, it

samples exactly the same number of random walks per each

starting point.. We used our workload keyword queries and

executed the Monte Carlo algorithm with different total

numbers of sampled walks. As the number of sampled walks
increases, the algorithm generates higher quality top-k lists,

which usually takes more time.

REFERENCES

1. s.brin, l.page,"the anatomy of a large-scale hypertextual web search
engine",computer networks,vol.30, nos.1-7, pp. 107-117, 1998.

2. t.h.haveliwala,"topic-sensitivepagerank,"proc.int’l world wide web

conf.(www),2002.
3. g.jeh, j.widom,”scaling personalized web search,”proc.int’l world

wide web conf.(www),2003.
4. d.fogaras, b.racz,k.csalogany,and .sarlos,"towards scaling fully

personalized pagerank: algorithms, lower bounds,and experiment",
internet math.,vol.2,no.3,pp.333-358,2005.

5. k.avrachenkov,n.litvak,d.nemirovsky, n.osipova,"monte carlo
methods in pagerank computation:when one iteration is sufficient",

siam j.numerical analysis,vol.45,no.2, pp.890-904,2007.
6. a.balmin,v.hristidis, y.papakonstantinou,"objectrank:authority-based

keyboard search in databases", proc.int’l conf.very large data bases
(vldb),2004.

7. znie , y. zhang , j .r . wen , w. y. ma , " object - level
ranking:bringing order to web objects", proc.int’l world wide web
conf.(www),pp.567-574,2005.

8. s.chakrabarti,"dynamic personalized pagerank in entityrelations
graphs", proc.int’l world wide web conf.(www),2007.

9. h.hwang,a.balmin,h.pirahesh, b.reinwald,”information discovery in
loosely integrated data,”proc.acm sigmod, 2007.

10. v.hristidis,h.hwang, y.papakonstantinou,"authority-based keyword
search in databases,”acm trans. database systems,vol.33, no.1, pp. 1-
40,2008.

11. m.r.garey, d.s. johnson,"a 71/60 theoremfor bin
packing,"j.complexity,vol.1,pp.65-106, 1985.

12. k.s.beyer,p.j.haas,b.reinwald,y.sismanis, r.gemulla,"on synopses for
distinct-value estimation under multiset operations,"proc.acm
sigmod, pp .199-210, 2007.

13. j.t.bradley, d.v.de jager,w.j.knottenbelt, a.trifunovic, "hypergraph

partitioning for faster parallel pagerank computation , ” EPEW,pp.

155-171, 2005.

http://www.ijeat.org/

