
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-4 Issue-6, August 2015

142

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number F4189084615/15©BEIESP
Journal Website: www.ijeat.org

Abstract— Information must be organized in such a way that it

is able to access, update and manage. Database is a collection of

such information that is organized in a well structured manner.

Since databases allow flexible data storage, huge amount of

information can be stored in it. Structured Query Language (SQL)

is used to do database operations especially the retrieval of data

inside database. The database operations must not be too time

consuming. Hence the database operations must be done in an

efficient and effective manner. The existing optimizer relies on

cost as well as heuristic approach. Our focus is to find an optimal

execution plan for a query.

Index Terms— SQL Query, Query Optimizer, Optimal Query

Plan

I. INTRODUCTION

Database contains large amount of data. The data is

retrieved from database basically through SQL statements

[1]. The SQL statements are declarative, and hence different

procedures can be used to write the SQL queries to get the

same result. But the use of optimal query is essential because

the performance of any system relies on the data retrieval.

Hence SQL Query Tuning [2] is essential. Each database

contains a query compiler to execute a query. The query

optimizer which is a part of query compiler generates an

optimized strategy for query execution which is then used by

the query complier to execute the query in an efficient way.

Basically the optimizer is either Cost- based or Heuristic-

based[3] [4].

 The query plan is the sequence of steps that must be

performed in a ordered manner to access the data in the

database. The query optimizer is not much perfect to always

generate optimized query plans for a query. If any database

users or the administrators find that, the query submitted is

consuming a lot of time then he must be able to load the

execution plans manually. SQL Plan Management is used to

manually load the plans based on the required efficiency .The

main characteristic of the SQL Plan Management is that,

eventhough it allows users to manually load the execution

plans, it does not allow the user to degrade the existing

performance of query execution. In this paper we are

manually loading multiple plans for a single query and find

the best query plan for that query.

Manuscript published on 30 August 2015.
* Correspondence Author (s)

Shani.S.Das*, Department of Computer Science and Engineering,
SCTCE, Trivandrum, Kerala, India.

Rejimoan.R, Department of Computer Science and Engineering, SCTCE,

Trivandrum , Kerala, India.

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

II. RELATED WORKS

The optimizers function is to develop the optimized query

plan for the query. Different optimizers exist and these

optimizers use basically two types of approach for the

execution plan generation- the cost based and heuristic based.

The cost based optimizers have several cost components to

consider. They include access cost refers to the secondary

storage ,Storage cost[6] refers to the cost for storing the

intermediate results, Computation cost which include the

coast for the CPU and Memory transfers and finally the

communication cost. The working of the cost based

optimizers is that the cost of each plan is estimated, it is a

number that represents the estimated resource usage for an

execution plan. Based on the estimation, the plan with the

lowest estimated cost is chosen as the optimal one. The

Heuristic based approach applies certain set of predefined

rules to the query and develop an optimal plan. Sometimes

the optimizers fail to load the optimal execution plan. LEO

optimizer (LEarning Optimizer) [6] [8] of DB2 works by

exploiting this. The optimizer will check each time the plan

developed by the optimizer is optimal or not. If the plan is

not a good one then the optimizer will correct its statistics

and generate a new plan. This plan is compared with the

previous plan. If the new plan is accurate the feedback loop

exists in the optimizer that will use this new plan for the

upcoming sql queries. The feedback loop is used to enhance

the available information on the database where the most

queries have occurred is chosen. This allows the optimizer to

actually learn from its past mistakes. Complex queries are

optimized using case base reasoning [7] in which the

similarity level is used to compare the query with the

existing one.

III. PROPOSED SYSTEM

The proposed method focuses on finding an optimal plan for

the query which reduces the execution time of the user

submitted query. The optimal plan for a query is find out by

manually executing the each plan for the query. Different

execution plans are manually generated and each plan is

executed individually. The optimized plan is estimated

based on time. The minimum time for a execution plan is the

criteria for identifying it as the optimized plan. SQL Plan

Management SQL Plan Management ensures that runtime

performance will never degrade due to the change of an

execution plan. In light of this if any inefficient plans are

executed or the query retrieval time get too long then there is

a possibility to load plans manually to the optimizer. These

plans are stored into datastructure. Each plan is individually

executed. The execution time of a query using a particular

plan is the criteria for selecting the optimal plan for the

query. The plan with less execution time is the optimal one.

A Novel Approach for Finding Optimal Query

Plan in RDBMS

Shani S. Das, Rejimoan.R

http://www.ijeat.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/

A Novel Approach for Finding Optimal Query Plan in RDBMS

143

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number F4189084615/15©BEIESP
Journal Website: www.ijeat.org

Inorder to manually generate the query execution plan the

first step is to identify the actual execution plan and disable it.

The administrator will force the optimizer to generate

different plans for the same query by supplying hints. For

example, in a join query of three tables Employee,

Department and Project, the administrator can force the

optimizer to generate the plan based on the index of either

Employee table or project table .Similar to the INDEX hint,

MERGE is another hint that can be used to generate another

plan for the same query. Each hint generates each plan.

INDEX hint tells the optimizer to use the index of the

particular table to generate the query execution plan. The

MERGE hint is used when the referenced table become the

inner table for the join operation. That is, forces the

optimizer to use sort merge join. Hence by supplying

different hints for the same query, the administrator can

force the optimizer to generate different plans. This process

is repeated for different queries and all these plans are stored

in a heap structure. The generated plans for the same query

are identified using the heap structure. If the administrator

needs to retrieve all generated plans for a particular query,

this handle value is used.

As any database system, Oracle is also a database which

mainly focuses on storing and retrieval of huge amount of

information. Oracle provides [5] different database versions

by which each of these versions are upward compatible.

Oracle 11g introduced a new feature of SQL Plan

Management which helps to manually load different plans

for the query. The plan generation module is tested in this

SQL Plan Base provided by Oracle 11g.This provides

different methods to load the query plans - From Staging

Table, From Cursor cache, From Stored outlines and Using

SQL Tuning Set. Out of these methods Cursor cache is used

for loading the plans. The following steps describe how

different plans are developed by using hints.

• Execute the SQL query so that a plan is generated by

the optimizer

• Retrieve the SQL_ID of the query

• Load the plan from the cache

• Retrieve the SQLHANDLE name and plan name

from the heap

• Disable the plan by using the plan name

• Give a hint to the optimizer for the same query

• Retrieve the SQL_ID and plan hash value

• Execute the plan by supplying SQLPLAN_ID and

SQL HANDLE value from cursor cache

• Repeat the process by giving new hints to the

optimizer so that multiple plans can be loaded to

baseline

For example,

Consider a schema which contains Employee,

Department and Project Tables. Suppose a user

need to retrieve the project number, department by

which the project is developing, and the employee

name, address and birthdate who is doing the

project in the corresponding department. Then its

SQL query is,
1. SELECT P.Pnumber, P.Dnum,E.Lname, E.Address,

E.Bdate FROM PROJECT AS P, DEPARTMENT AS

D, EMPLOYEE AS E WHERE P.Dnum=D.Dnumber

and D.Dnumber=E.Dno;

 2. The required SQL_ID is retrieved using the query

 SELECT sql_id, sql_fulltext FROM V$SQL

WHERE sql_text LIKE ’%SELECT

PROJECT.Pnumber%’;

 3. After retrieving the SQL_ID use the SQL_ID to load

the available plans from the cursor cache .For example the

SQL_ID is 7tdzmaxw181qm

 EXECUTE: cnt: =DBMS_SPM.LOAD_PLANS_

FROM_CURSOR_CACHE (sql_id =’7tdzmaxw181qm’);

 4. To load the plans it is needed to know the

SQLHANDLE because the SQLHANDLE uniquely

identifies different plans for a single query.

 SELECT sql_handle, sql_text, plan_name, enabled

 FROM dba_sql_plan_baselines;

 Let SQLHANDLE value is SYS_SQL_265b531f5c95ac32

 5. Give a hint to the optimizer to generate another plan.

For example the hint is INDEX then the query becomes

 SELECT /*+INDEX (EMPLOYEE)*/

P.Pnumber, P.Dnum, E.Lname, E.Address,E.Bdate FROM

PROJECT AS P, DEPARTMENT AS D, EMPLOYEE AS E

WHERE P.Dnum=D.Dnumber and D.Dnumber=E.Dno;

 6. Repeat the step 2 to get the SQL_ID of the new plan

generated by the INDEX hint. Let the SQL_ID of this plan is

a31zxkc5cm8a2

 7. Load plans for the cusror cache using the SQL_ID in

the above step and the handle name from the step 4

 Exec:cnt:=dbms_spm.load_plans_from_cursor_cache

(sql_id = ’a31zxkc5cm8a2’, plan_hash_value =

2774714633, sql_handle =

(’SYS_SQL_265b531f5c95ac32’) ;

 8. Repeat the steps 5, 6, and 7 with another hint to

generate another plan for the same query

 9. The loaded plans are viewed from the baselines

using

select t.*from table (dbms_xplan.display_ sql_

plan_baseline(’SYS_SQL_265b531f5c95ac32’,

format = ’basic’)) t;

 10. The execution time of a query can be found by set

timing on or using the query

SELECT CPU_TIME, ELAPSED_TIME FROM

V$SQLAREA WHERE SQL_FULLTEXT

LIKE ’%SELECT /*+INDEX (EMPLOYEE) %’;

IV. RESULTS AND ANALYSIS

As discussed above, the optimal plan is obtained by

comparing different query execution plans for that query.

One among those query plans for comparison is the plan

initially developed by the optimizer, when the query is

submitted. The optimal plan is chosen by executing the

query based on the plan and obtaining its execution time.

The query plan with lowest execution time is taken as the

optimal query plan. Some of the queries and its optimal plan

are shown below.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-4 Issue-6, August 2015

144

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number F4189084615/15©BEIESP
Journal Website: www.ijeat.org

SQL QUERIES HINTS with ELAPSED TIME (msec)

OPTIMIZED PLAN

L-LEADING,H-HASH,I-INDEX,O-ORDERED,P-PARALLEL,A-ALLROWS,F-FIRSTROWS,OP-OPTIMIZER,U-USE

MERGE

 L O I A F U H P OP

SELECT P.Pnumber, 0.042

P.Dnum, E.Lname,

E.Address,E.Bdate

FROM PROJECT AS P,

DEPARTMENT AS D,

EMPLOYEE AS E WHERE

P.Dnum=D.Dnumber and

D.Dnumber=E.Dno;

0.51 - - 0.6 - 0.45 0.05 ORDERED (O)

SELECT SUM (Salary), -

 MAX (Salary), MIN (Salary),

 AVG (Salary)

 FROM EMPLOYEE;

0.02 0.01 - - 0.012 - 0.013 ALL_ROWS(A)

SELECT ssn, Fname, -

 Address FROM EMPLOYEE,

 DEPARTMENT WHERE

 Dnumber=Dno;

0.012 0.012 - - - 0.09 0.01 OPTIMIZER(OP)

SELECT E.Fname, E.Lname 0.013

FROM EMPLOYEE AS E

WHERE EXISTS (SELECT *

 FROM DEPENDENT AS D

 WHERE E.Ssn=D.Essn AND

E.Sex=D.Sex AND E.Fname

 = D.Dependent_name);

SELECT Fname, Lname

 FROM EMPLOYEE WHERE

 EXISTS (SELECT * FROM

 DEPENDENT WHERE

Ssn=Essn) AND

EXISTS (SELECT * FROM

DEPARTMENT WHERE

Ssn=Mgr_ssn);

 0.012 - - 0.01 - 0.05 0.04 USE_MERGE(U)

 0.035 - - 0.043 - 0.03 0.08 0.04 HASH(H)

V. CONCLUSION

The performance of any application which uses databases

indirectly depends on the data retrieval from that database.

Every data retrieving queries execute based on the execution

strategy developed by the query complier. Sometimes the

query optimizer may fail to produce an optimized query plan

and hence the finding an optimized query plan is so important.

The work mainly focuses on the reducing the time for the

query execution. The query execution is more important

database operation which affects the working of the critical

applications. If the database operation related to the

application is time consuming then it becomes a cumbersome.

To reduce this, our work relies on reducing the query

execution time by generating more optimized plans.

REFERENCES

1. P. Prof.M.A.Pund, S.R.Jadhao, “A role of query optimization in
relational database,” International Journal of Scientific & Engineering

Research, Volume 2, Issue 1,pp - 1-7, January2011.

2. Dr. G. R. Bamnote, “Introduction to query processing and
optimization,” International Journal of Advanced Research in

Computer Science and Software Engineering , Volume 3, Issue 7, pp :
6-13, July 2013.

3. Y.Ioannidis, “Query optimization,” in Proc ACM Computer Survey,vol.

28, pp. 121–123, 1998.
4. S. Chaudhuri, “An overview of cost-based optimization of queries with

aggregates,” IEEE DE Bulletin pp : 34-43, Sep1995.
5. An oracle white paper november 2010 “sql plan management in oracle

database 11g” 2013.

http://www.ijeat.org/

A Novel Approach for Finding Optimal Query Plan in RDBMS

145

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number F4189084615/15©BEIESP
Journal Website: www.ijeat.org

6. Volker Markl Mokhtar Kandil Michael Stillger, Guy Lohman. Leo –
db2’s learning optimizer. Proceedings of the 27th VLDB Conference,

Roma, Italy,, 2001.

7. Sakshi Mathur Pragya Shukla. Optimizing complex queries using

casebased reasoning with dynamicity management. IEEE Proceedings,

2014.
8. V. Raman V. Markl, G. M. Lohman. Leo: An autonomic query

optimizer for db2. IBM SYSTEMS JOURNAL, VOL 42, NO 1,, 2003.
9. C. A. van den Berg and M. L. Kersten. “Analysis of a dynamic query

optimization technique for multijoin queries” Elsevier Science Inc.,

2010.

Shani .S.Das is currently doing MTech in

Computer Science and Engineering in Sree Chitra

Thirunal College of Engineering under Kerala
University, Trivandrum , Kerala, India. Shani

received BTech Degree in Computer Science and
Engineering from Govt. Engg. College under M.G

University , Kottayam. Kerala, India in 2011. She

concentrates mainly on database, machine learing.
She has also worked as Guest Lecturer in Information Technology in Govt.

Engg. College , Painavu , Idukki Kerala, India.

Rejimoan. R is working as professor at department

of computer science and engineering, Sree Chitra
Thirunal College of Engineering, Trivandrum,

Kerala. Now he is doing his research in Machine
Leraning. He has published his research works in

many national and international conferences and

journals. He has working experience of 11 years in
Sree Chitra Thirunal College of Engineering. He is

interested in Databases, Machine learning and Natural Language
Processing.

http://www.ijeat.org/

