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   Abstract: We consider the min-cost k-cover problem: For a 

given a set P of n points in the plane, objective is to cover the n 

points by k disks, such that sum of the radii of the disks is 

minimized. In this paper we introduce the concept of constraints 

for min-cost k-cover problem. In any instance I of k-cover, the 

optimal solution value is at most the maximum radius r of ball 

𝑩(𝒗 , 𝒓) centered at  𝒗 ∈ 𝑽 in I. It implies that, in optimal 

solutions there always exists a constraint that separates the 

optimal solution. Investigation formulate that a can-not link 

constraint always separate the optimal solution very clearly and 

reduces cardinality of distinct maximal discs. Introduction of 

constraints improves the performance of min-cost k-cover 

algorithm over the existing algorithms. 

   Keywords: k-clustering, min-cost k-cover, minimum sum of 

radii cover, constraint clustering. 

I. INTRODUCTION 

  Clustering analysis is fast emerging field of research in 

the vast arena of data mining, machine learning, operation 

research, and its allied areas. Cluster analysis [1-4] is mainly 

concerned with the problem of partitioning a given set of 

entities into homogeneous and well-separated subset, such 

that similar objects are kept in a group whereas dissimilar 

objects are in different groups. Constraints facilitate hands 

on information about the desired partition and strengthen 

performance of clustering algorithms. The primary function 

of constraint based algorithms is not to encompass all the 

domain expert’s requirements but also instrumental in 

directing the algorithm to a desirable set partition by 

adopting user specified or derived constraints whereas 

constraint algorithm stimulates composition of a desirable 

clustering of the instances.     In this paper we consider the 

min-cost k-cover problem. The Euclidean min-cost k-cover 

problem defined as follows. Given a metric d defined on a 

set V of points, we define the  ball 𝐵(𝑣, 𝑟)centered at 𝑣 ∈
𝑉 and having radius 𝑟 ≥ 0 to be the set { 𝑞 ∈
𝑉 | 𝑑(𝑣, 𝑞) ≤ 𝑟}. In the minimum cost k-cover problem, we 

are given a set P of n points and integer k (k > 0). For κ > 0, 

computing a κ-cover for subset 𝑄 ⊆ 𝑃 is a set of at most κ 

balls covering all point of set Q and each ball centered at a 

point in P. The sum of the radii of balls is the cost of a set D 

of ball denoted by cost(D). In the Euclidean version, P is 

given as a set of points in some fixed dimensional Euclidean 

space Rl, and d is the standard Euclidean distance. In the 

metric version of the min-cost k-cover problem, we have P 

and k and the distance d between every pair of points in P.  
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   The min-cost k-cover problem is well studied in general 

and Euclidean metrics. The initial results on approximation 

algorithms are due to Doddi et al. [5] who considered the 

metric min-cost k-cover problem and the closely related 

problem of partitioning P into a set of k clusters so as to 

minimize the sum of the cluster diameters they call this 

clustering to minimize the sum of diameter (MSD). They 

showed that unless 𝑃 = 𝑁𝑃  for any  𝜖 > 0 there is no, 

(2 − 𝜖)-approximation algorithm for the MSD problem. 

They also present a bicriteria polynomial time algorithm that 

returns O(k) clusters whose cost is within a multiplicative 

factor O(log(n/k)) of the optimal. For the objective function 

of minimizing the k-cover problem, Charikar and Panigrahy 

[6] presented a polynomial time algorithm based on the 

primal-dual method that gives a constant factor 

approximation algorithm of around 3.504 and thus also a 

constant factor approximation for MSD problem. Proietti 

and Widmayer [7] consider a problem closely related to the 

metric min cost k-cover problem. They prove that the 

problem is NP-hard, but for fixed k they give polynomial 

time algorithms. Lev-Tov and Peleg [8] research work is 

concerned with geometric disk covering problem. They give 

a polynomial time approximation scheme, having 

approximation factor of (1+6/k) and time complexity of 

O(k2.(nm)γ+2), for a problem that is closely related to the 

geometric min-cost k-cover problem and they call this 

minimum sum of radii cover (MSRC) problem. Bilo et al. 

[9] give polynomial time approximation schemes for 

generalizations of the MSRC problem. For minimizing the 

αth power of the radii of the balls, where α ≥ 1 they give 

approximation schemes for a generalization of the MSRC 

and they also show that for α ≥ 2 such a generalization min-

cost k-cover problem in the plane and the MSRC problem 

are NP-hard. They also give a polynomial time algorithm of 

𝑂(𝑛𝑂(𝜆4+𝜉)) if points lie on a line. Alt et al. [10] show that 

the NP-hardness result for the MSRC problem can be 

extended to any α > 1. Gibson et al. [11] give an (1 + ϵ)-

approximation algorithm for metric version of min-cost k-

cover problem. Gibson et al. [12] give an exact algorithm 

which runs in time O(𝑛(𝑙𝑜𝑔𝑛.𝑙𝑜𝑔∆)) for the metric version of 

min-cost k-cover problem. They also give (1 + ϵ)-

approximation algorithms for metric version of min-cost k-

cover problem when model of computation does not hold. 

Gibson et al. [13] designed an polynomial time exact 

algorithm for euclidean min-cost k-cover problem which 

runs in time 𝑂(𝑛881. 𝑇(𝑛)), where T(n) ≥ 1 is an upper 

bound on the time needed to compare the costs of two 

subsets of D. Behsaz et al. [14] give polynomial time exact 

algorithm for the unweighted minimum sum of radii 

problem when no singletons (clusters of radius zero) is 

allowed.  
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   In the present research, we introduced the concept of 

constraints in min-cost k-cover problem. We modify the 

𝑂(𝑛881. 𝑇(𝑛)) polynomial time exact algorithm of Gibson et 

al. [13] to obtain a polynomial time constraint based 

algorithm for euclidean min-cost k-cover problem. The 

present research identify the can-not link constraints and 

apply these derived constraints in the algorithm for the 

reduction of distinct maximal disks and reduction of all 

enumerated subsets of the distinct maximal disks in 

minimum sum of radii problem. This in turn reduces the 

number of table entries of exact algorithm [13]. The basis 

for the constraint technique is motivated by a observation 

that in any instance I of k-cover, the optimal solution value 

is at most the maximum radius r of ball 𝐵(𝑣 , 𝑟) centered 

at  𝑣 ∈ 𝑉 in I. It implies that, in optimal solutions there 

always exists a constraint that separates the optimal solution.  

II. PRELIMINARIES 

Research commence with the observation that for any 

instance I of k-cover, the solution value is at most the 

maximum radius r of ball 𝐵(𝑣 , 𝑟)  and optimal solution is 

decidedly separable. Thus it permits to compute an optimal 

k-cover efficiently using constraints. We call a ball of zero 

radius as singleton ball. Similarly, we call a disc of zero 

radius as singleton disc.  

Lemma 1. For any instance of I of k-cover, the optimal 

solution value is at most the maximum radius r of ball B(v, 

r) in I. 

Proof. Given any instance of k-cover, a solution 𝐵 =
{𝐵1 , 𝐵2, … , 𝐵𝑘} consisting of k balls covering all instance of 

I. The cost of B is given by the following formula cost(𝐵) =

 ∑ 𝑟𝑎𝑑𝑖𝑢𝑠(𝐵𝑖)𝑘
𝑖=1 . Assume balls B2, B3,...,Bk as singleton 

balls. Assign randomly chosen 𝑛 − 𝑘 + 1 points to ball B1 

and assign remaining 𝑘 − 1 points to 𝑘 − 1 balls such that 

each ball contains single point. Hence, cost(𝐵) =
cost(𝐵1) = 𝑟𝑎𝑑𝑖𝑢𝑠(𝐵1). Therefore the the optimal solution 

value is at most the maximum radius r of ball B(v, r) in I. 

Definition 1: A distinct maximal disc (DMD) is a disc if one 

cannot add any point to it without increasing its radius. Any 

solution can be reduced into one having only distinct 

maximal disc without increasing the cost. Thus, non-distinct 

maximal discs can be ignored to obtain optimal solution. 

Lemma 2. In the min-cost k-cover problem, the number of 

distinct maximal discs is at most O(n2). 

Proof. Let us consider a set of points 𝑃 = {𝑣0, 𝑣1, … 𝑣𝑙}  and 

𝑟0, 𝑟1, … 𝑟𝑛 are the sorted distance from the point v0 in the 

ascending order. For any value of 1 < i ≤ l, consider a ball 

𝐵(𝑣𝑜, 𝑟) of radius r, such that 𝑟𝑖 ≤ 𝑟 < 𝑟𝑖+1. It implies that 

distinct maximal discs 𝐵(𝑣0, 𝑟𝑖) =  𝐵(𝑣0, 𝑟). So, the only 

distinct maximal disc centered at 𝑣 are 𝐵(𝑣, 𝑟𝑖) for  1 ≤ 𝑖 ≤
𝑙 and 𝑣 is center of 𝑙 ≤ 𝑛. Each point can be the center of at 

most n distinct maximal discs, distinct maximal discs also 

include disk of radius zero or singleton disk, and therefore 

there are at most n2 distinct maximal discs. The number of 

distinct maximal discs for the min-cost k-cover problem is at 

most n2 (by Lemma 2).This yields a very important 

advantage when we deal with the min-cost k-cover problem. 

All subsets of the distinct maximal disc having size at most l 

can be enumerated in time 𝑂(𝑛2𝑙). When l is a constant, this 

is polynomial time. 

III. CONSTRAINTS BASED MIN-COST K-

COVER APPROACH 

Wagstaff and Cardie [15] introduced constraints in the area 

of data mining research. There are two types of constraints 

that were termed as must-link constraint and can-not link 

constraint. In must-link (ML) constraint two instances have 

to be in the same group, ML(a, b) symbolize instance a and 

b to have be in the same group. In cannot-link (CL) 

constraints two instances must not be placed in the same 

group, CL(a, b) symbolize instance a and b to have be in the 

different group. Algorithm 1 finds can-not link constraints in 

any instance I of k-cover problem. 

3.1. Constraint Algorithm 

Input: Instance of min-cost k-cover problem, A set S of can-

not link constraint, S = Ø 

Algorithm 1 takes input as any instance of I of min-cost k-

cover problem. Computes initial feasible solution in 

accordance of Lemma 1. Can-not link constraints are 

investigated and generated for each ball 𝐵(𝑣, 𝑟), where 𝑣 ∈
𝑉 and r is the radius of ball.  Algorithm 1 return a set of can-

not link constraints. 

 

Theorem 1:  Maximum number of can-not link constraints 

generated in any instance I of k-cover problem is order of 

O(n2). 

Proof. We have instance I of k-cover problem consisting of 

n points. For any two points p, q can-not link constraint exist 

in𝐵(𝑣, 𝑟) 𝑖𝑓 𝑟 > |𝑝𝑞| > Icost(𝐷). Formally it can be stated 

as ∃ CL − constraint, If (|𝑝𝑞| > Icost(𝐷)) , ∀ 𝑝, 𝑞: 𝑝, 𝑞 ∈
𝑉. Point p and q can be any point from the V, so maximum 

n2 combination can be possible. This is similar to the finding 

the distinct maximal discs.  The number of distinct maximal 

discs is at most n2 (by Lemma 2). Therefore, Maximum 

number of can-not link constraints is order of O(n2). 

Theorem 2:  Minimum number of can-not link constraints 

generated in any instance I of k-cover problem is order of 

O(k). 

Proof. For k =1, all points of I are covered by a single 

ball 𝐵(𝑣, 𝑟). Assume that a can-not link constraint CL(p, q) 

exist between any two points p, q of ball 𝐵(𝑣, 𝑟), then p, q 

together ∃ 𝐶𝐿(𝑝, 𝑞)|  𝑝, 𝑞 ∈ 𝐵(𝑣, 𝑟)then (𝑝 and (𝑛 −
2)points) ∈ 𝐵1(𝑣,  𝑟1) and point 𝑞 ∈  𝐵2 can-not Then, 𝑛 −
1 points belong to B1(v, r1) and point q belong to singleton 

disk B2. In this manner if there are 𝑘 − 1 can-not link 

constraints then k balls can cover n points, 𝑛 − 𝑘 + 1 points 

are covered by a ball Bi (v, ri) and rest of the k-1 points are 

covered by k singleton disks. Solution obtained in this way 

is a feasible and optimal solution (by Lemma 1). 
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Theorem 3: Number of discs in reduced distinct maximal 

discs is always less than distinct maximal discs, |𝐷𝑅| < |𝐷|. 
Proof.  In the minimum sum of radii problem, the number of 

distinct maximal discs is at most O(n2) and also optimal 

solution contain discs only from the set of distinct maximal 

discs . Let Dr denotes the reduced distinct maximal discs. 

There are always exist at least a can-not link constraint in 

any instance of min-cost k-cover problem (by Theorem 2). If 

a can-not link constraint belongs to distinct maximal disc 

then that distinct maximal disc will not be part of optimal 

solution. So, with the help of can-not link constraints, it can 

checked be whether a distinct maximal disc will be a part of 

canonical optimal solution or not. Hence, can-not link 

constraints reduce the number of distinct maximal cluster. 

Let S denote set of can-not link constraints and α denoted 

the cardinality of set S such that, then maximum value of α 

is O(n2) (by Theorem 1). If α constraints (O(n2)) are applied 

on the distinct maximal discs D(O(n2)) then D will be 

reduced by considerable factor, hence |𝐷𝑅| < |𝐷|.  
Corollary 1: A can-not link constraint clearly separate the 

optimal solution. 

3.2. Constraint based min-cost k-cover algorithm 

Consider an instance of the Euclidean min-cost k-cover 

problem which consists of a set of points V on the plane 

along with an integer k. Here, the distance between any pair 

of points is the Euclidean distance of these points in the 

plane. Let D be the set of distinct maximal discs with a 

center p ∈ V and radius |pq| for some q ∈ P.  D includes the 

disk of radius 0, thus |D| = n2.  

   Gibson et al. approach [13]: An axis parallel rectangle is 

called balanced if the ratio of its width to length is at least 

1/3. This approach uses balanced rectangles to define the 

sub-problems. A separator for a (balanced) rectangle 𝑅 is 

any line which is perpendicular to its longer side and cuts it 

in the middle third of its longer side of the rectangle 𝑅. The 

algorithm starts with a rectangle 𝑅0 containing all the points 

and cuts it into two smaller rectangles by selecting a 

separator line and solves the sub-problems recursively. The 

A vertical or horizontal line is called critical if it either goes 

through a point p ∈ P or if it is tangent to some disk in D. 

All vertical lines between two consecutive critical vertical 

lines intersect the same set of discs. Thus, there are only 

Θ(n2) vertical or horizontal lines to consider as separators. 

To get an optimal solution it is required to consider 

only |𝑇| ≤ 𝛽 = 424. It signify that the size of the dynamic 

programming table is O(n2β+5), which is polynomially 

bounded.  

    Constraint algorithm: A set S of can-not link constraints 

are generated using Algorithm 1. The constraint min-cost k-

cover algorithm takes input a rectangle 𝑅, an integer 𝜅 ≥ 0, 

a subset 𝑇 ⊆ 𝐷, a set of constraint S and has a recursive 

procedure DC(𝑅, 𝜅, 𝑇, 𝑆), computes an optimum solution 

using at most κ discs for the set of points in 𝑄 = {𝑞: 𝑞 ∈ 𝑃 ∩
𝑅, q is not covered by 𝑇}. A can-not link clearly separate 

the optimal solution (by Corollary 1). This implies that a 

separator is simulating like a can-not link constraint and 

diving the problem into sub-problem and solving it 

recursively. The algorithm calls DC(𝑅0, 𝑘, ∅, 𝑆) to find the 

best cover for P by applying α constraint’s. The value of the 

sub-problem for a recursive call is stored in a dynamic 

programming table Table(𝑃 ∩ 𝑅, 𝜅, 𝑇). In constraint 

algorithm initial steps are basic initialization step and it 

remains same as constraint algorithm follows the steps as of 

algorithm [13]. Numbers of separators are directly 

proportional to the number of distinct maximal disk. Our 

based constraint approach uses the reduced distinct maximal 

disk instead of distinct maximal disk so number of 

separators will be reduced.  

   The overall running time of a call to DC(𝑅0, 𝑘, ∅, 𝑆) is 

bounded by table entries. Each table entry is indexed by a 

set of points 𝑃 ∩ 𝑅 for some balanced rectangle R, a  𝜅 ≤
𝑘 and a set  𝑇 ⊆ 𝐷 such that |T| ≤ β = 424. The proposed 

constraint based approach reduces the β hence, running time 

also reduces. Number of disk inside R, intersected by a 

separator is at most 12(Lemma 2.1 in [13]).  Our constraint 

based algorithm uses the reduced distinct maximal disks 

(Dr) instead of distinct maximal disks (D) so β will be 

reduced which in turn improves the performance of 

algorithm. 

IV. CONCLUSION 

Constraint based approach to min-cost k-cover problem 

improves the bound of algorithm. The research portrays how 

constraint based algorithm is convenient and can yields 

better empirical results in comparison to non-constraint 

algorithms for min-cost k-cover problem. Number of calls 

stored in a table bounded by O(n881) are very high for small 

value of n. In the present research, can-not link constraints 

reduced the size of the table entries. The research can be 

concluded that with minimizing the number of distinct 

maximal disks number of entries in the table are reduced, 

which in turn improves the overall complexity of the 

algorithm significantly.  
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