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Abstract: This paper presents the design of the finite time 

sliding mode controller based on reduced order observer for 

time-delay systems with mismatched uncertainties. The main 

achievements of work are: (1) a suitable reduced order observer 

(ROO) is constructed to estimate the unmeasurable state variables, 

(2) a finite time sliding mode controller (FTSMC) is designed by 

employing the estimated variables, and (3) by the application of 

the Lyapunov stability theory and the linear matrix inequality 

(LMI) technique, the stability of the overall closed-loop 

mismatched uncertain systems with a time delay is guaranteed in 

sliding mode under sufficient condition. Finally, the design 

procedure is given to summarize the proposed method. 

Index Terms: Variable Structure Control (VSC), reduced- 

order observer (ROO), finite-time convergence, mismatched 

uncertainty, time-varying delay.  

I. INTRODUCTION 

    Generally speaking, most common time-delay is 

encountered in physical control systems. It frequently 

induces system instability and bad performance; hence, one 

of the efficient methods is use the variable structure control 

(VSC) theory [1], [2]. The VSC has been successfully applied 

for the stability of the time delay uncertain system with a 

large number of quality papers published in the most recently 

internationally renowned journals and the related references 

therein [3]-[6]. The VSC has various attractive features such 

as finite-time convergence, fast dynamic response, good 

robustness, exogenous perturbations rejection ability, and its 

insensitivity to parameter variations. The VSC theory has 

been effectively applied to a wide variety of practical 

time-delay systems such as hydraulic/pneumatic, data 

transmission, satellite systems, robotic manipulator, chemical 

processes, communication and network system, etc [7]-[10]. 

  Based on the results of the existing studies, it can see that 

the traditional method of VSC uses full-state feedback or 

full-order observer (FOO) which requires extra dynamics to 

estimate the unmeasurable state variables with large 

dimension. In some cases, this could not be feasible. In 

addition, the FOO increases the computation and structure 
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complexity. This leads to develop an output feedback sliding 

mode controller (SMC) which employs the output 

information only or reduced-order observer (ROO) that the 

conservatism is reduced, and the robustness is enhanced in 

comparison with FOO.   To estimate unmeasurable states of 

systems, the FOO/ROO is investigated by authors [11]-[14]. 

In [11], the state parameter observer was proposed for 

multiple-input- multiple output systems with time-varying 

delay under matching condition. The FOO was established in 

[12] for a class of time delay uncertain systems with 

nonlinear disturbance which satisfies the Lipschitz condition. 

Based on the average dwell-time concept, an observer 

scheme was studied in [13] for some classes of switched 

linear systems with unknown inputs. Nevertheless, the error 

of this observer converges exponentially to zero as time tends 

to infinity. In contrast to the FOO, the ROO estimates only 

those states that are not directly measured. An asymptotic 

observer in a lower dimension was studied in [14] for linear 

time-delay systems when the so-called observer matching 

condition is not satisfied. However, in most existing 

FOO/ROO works, the finite time convergence could not be 

guaranteed simultaneously with the invariance property for 

mismatched uncertain systems with a time-delay.   The VSC 

problem has been investigated by researchers [4], [15], [16]. 

In [15], the state feedback controller was designed by using 

the average dwell time approach and the piecewise Lyapunov 

function technique. Based on concept of Moore–Penrose 

inverse, sliding mode variable structure control was studied 

for a class of mismatched uncertain switched delay systems 

[16]. In [4], the Lyapunov-Krasovskii function method and 

Leibniz-Newton formula were adopted to analyze the 

stability problems for uncertain time-delay systems, which 

did not consider perturbations. However, in some cases in 

physical control systems, the states of plant are not available 

for direct measurement or the sensor price is very expensive. 

Recently, many authors have presented several control 

schemes for the uncertain systems with time delay using only 

output variables [3], [5], [6], [17], [18]. In [17], FOO-based 

adaptive sliding mode controller for uncertain systems with a 

time delay under matching condition. H non-fragile 

observer-based sliding mode controller was represented in 

[18] for uncertain time-delay systems subjected to input 

nonlinearity via linear matrix inequality (LMI) technique. 

This LMI technique [19] has some benefits over traditional 

approach methods; that is, LMI problems can be easily 

determined and efficiently solved by using the LMI Toolbox 

[20] in MATLAB software.  
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However, the error of state observer is asymptotically stable 

only, that is, the trajectories of closed-loop systems could not 

tend to zero in finite time. FOO-SMC was explored in [3] for 

a class of state-delayed switched systems with uncertain 

disturbance which is bounded by output signal. Recently, the 

study [5] was conducted to design SMC based on FOO for 

nonlinear Markovian jump systems with partly unknown 

transition probabilities. In [6], the SMC was proposed, which 

assumed that the norm of states and norm of observer error 

have to be bounded output signal, for a class of uncertain 

neural systems with unmeasurable states. It should be pointed 

out that the recent works [3], [5], [6] have some serious 

limitations, where it is required that the exogenous 

disturbances must be bounded by a known function of the 

outputs. Moreover, all published works have represented the 

SMC based on FOO, which increases the computation of 

burden due to the associated closed-loop systems. 

  Motivated by the aforementioned analysis, in this study, a 

class of time delay systems is considered involving both 

matched and mismatched uncertainties. The ROO is first 

designed to estimate unmeasured variables with lower- 

dimensional systems. Then, a finite time sliding mode 

controller (FTSMC) is designed by using only output 

variables and estimated variables. This FTSMC will drive the 

trajectory of the system to the switching surface in finite time 

and maintains a sliding mode. Finally, constructing LMI 

condition to guarantee the time-delay systems with 

mismatched uncertainties in sliding mode is asymptotically 

stable. Finally, the design procedure is given to summarize 

the proposed theoretical results. 

  The remainder of this paper is organized as follows: system 

model and preliminaries are considered in this paper is 

described in Section 2. It is also shown that the main results 

will be represented in Section 3. Stability analysis in sliding 

mode is showed in Section 4. Finally, a conclusion is 

provided in Section 5.    

Notation: Throughout this paper, a variable/vector with 

subscript ( )d t  is introduced to denote the time-delayed 

variable/vector, for example dx  denotes ( ) ( ).dx t x t d= −  

nR  symbolizes the n-dimensional Euclidean space, and 
n mR 

 denotes the set of all n m  real matrices. For matrix 

,A  the notation 0A   means that the matrix A  is a positive 

definite matrix. I  and 0  represent the identity matrix and a 

zero matrix, respectively. The superscript “ T ” shows the 

transpose. Finally, the notation •  stands for the Euclidean 

norm of a vector and the induced spectral norm of a matrix. 

II. SYSTEM MODEL AND PRELIMINARIES 

 We consider a class of the mismatched uncertain systems 

represented by the following equations  

 

 

                  

( ) ( ) ( )

( ) ( ( ), , ) ,

( ) ( ),

( ( )) and  ( ) ( ) for  0,

d d d

d

d

x t A A t x t A A x

B u t ξ x t x t

y t Cx t

x x t d t x t t d t

= +  + +   

+ +  

=

= − = −  

              (1) 

 

where the state variables, the control input, and the output of 

the system are represented by  ( ) ,  ( ) ,n mx t R u t R   and 

( ) ,py t R respectively. The function ( )d t  is a known 

non-negative constant time-delay and ( )t  is the continuous 

initial function defined over [ ,  0].d−  The matrices 

,  ,  ,  dA A B  and C  are non-unique constant matrices with 

appropriate dimensions. The matrices ( )A t  and dA  

represent the structure parameter mismatched uncertainties in 

the state matrix and the delayed state matrix, respectively. 

The term ( ( ), , )dξ x t x t  describes the influence of exogenous 

disturbance on the plant.  

Before proceeding with the main result of this paper, the 

several standard assumptions are needed for our study as 

follows 

Assumption 1. The number of inputs is smaller than or equal 

to the number of output channels, that is, .m p n   The 

input matrix B  and C  have full rank, and rank( ) .CB m=  

Assumption 2. The pair ( ,  )dA A B+  is completely 

controllable, and the pair ( ,  )dA A C+  is completely 

observable. 

Assumption 3. ( )A t  and d
A  are mismatched parameter 

uncertainties which are assumed to be the form of 

   ( ) ( ( ), , )   ( ( ), , ) ,
d d d d d d

A t A D x t x t E D x t x t E   = where 

,  ,  ,dD E D
 
and dE  constant matrices with appropriate 

dimensions, and ( ( ), , )
d

x t x t  and ( ( ), , )
d d

x t x t  are 

unknown matrix function satisfying ( ( ), , ) 1
d

Σ x t x t   and 

( ( ), , ) 1
d d

Σ x t x t   for all 0,t   respectively. 

Assumption 4. The unknown disturbance ( ( ), , )
d

ξ x t x t  of 

system (1) satisfies ( ( ), , )
d

ξ x t x t  ( )( ) ,
m d

k k x t x


 + +  

where ,k


 and m
k  are known non-negative constants. 

Remark 1. Assumptions 1, 2, and 3 are standard assumptions 

for time delay systems which can be found in most existing 

literatures. For Assumption 4, in recent studies [3], [5], [6], it 

is required in this technical note that the exogenous 

disturbances must be bounded by a known function of the 

outputs. In practical cases, these conditions are often difficult 

to meet. For our method, the external disturbances must be 

satisfied an unknown function of the state and delayed state 

variables. Thus, the condition in Assumption 4 is an 

extension of the condition used in these studies. 

To design a novel FTSMC for the uncertain time-delay 

system (1), the following sliding surface is chosen 

 
 

( ) ( ) ( ) ( ) 0,t Fy t FCx t Sx t = = = =           

 (2) 

where 
xm pF R  is a constant matrix, and xm nS R  is a 

sliding matrix. It follows from (2), one can see that there are 

only output variables used. 

For development of theorems and stability analysis in 

sliding mode, some following standard lemmas are necessary   

Lemma 1 (see [21]). Let ,  
1 2

R R  and ( )Σ t  are real matrices 

of suitable dimension with 
TΣ Σ I  then, for any scalar 

0,   the following matrix inequality holds   
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1( ) ( ) .T T T T T

1 2 2 1 1 1 2 2
R Σ t R R Σ t R R R R R−+   +                      

(3) 

 

Lemma 2 (see [22]). For two vectors ,  x y  of nR  and a 

positive definite matrix 
x ,n nN R  following inequality holds

  

 
1 ,T T T Tx Ny y Nx x Nx y Ny−+   +                    

 (4) 

 

for all 0.   

Lemma 3 (see [19]). For a given matrix 
 

 

11 12

T

12 22

Δ  Δ
Δ

Δ  Δ

 
=  

 
 with 

T

11 11
Δ Δ=  and ,T

22 22Δ Δ=  then the following conditions are 

equivalent 

 

(i) 0,

(ii) 0,  0,

(iii) 0,  0.

T -1

11 22 12 11 12

T -1

22 11 12 22 12

Δ

Δ Δ Δ Δ Δ

Δ Δ Δ Δ Δ



 − 

 − 

          

 (5)  

 

III. DESIGN OF THE OBSERVER-FINITE TIME                         

SLIDING MODE CONTROLLER  

A. Description of a Regular Form 

First of all, an original time-delay system (1) is 

transformed into a regular form via a nonsingular 

transformation. According to the research of El-Ghezawi et 

al. [23], Zak and Hui [24]. There exist the eigenvector matrix 

W  Rnx(n-m) and the feedback matrix N  Rmxn such that [A + 

BN]W = WJ, where J  R(n-m)x(n-m) is a freely chosen Jordan 

matrix which determines the system dynamics restricted to 

the  switching surface. Using the procedures of the 

well-known eigenvalue/eigenvector assignment method, the 

following assumption is necessary  

Assumption 5. The matrix    T W B

 

is invertible and the 

inverse of T has the form 1 ,

g

g

W
T

B

−
 
 
  

 where Wg and Bg 

denote the generalized inverse of W and B, respectively. By 

selecting S = Bg and using the fact 1 ,
n

TT I− =  one can obtain 

 

x( ) ( )x

,   ,

0 ,   0 .

g

m n m

g

m n m n m m

SB I W W I

SW W B

−

− −

= =

= =
                  

 

(6) 

 

To obtain the regular form of the system (1), we introduce 

a new coordinate transformation as 

 

1
( )

( ),
( )

z t
T x t

t

− 
= 

 
 

and

 

1 ,
d

d

d

z
T x−

 
= 

 
           

 

(7) 

 

where z(t)  Rn-m is unmeasurable variable, whereas the 

switching variable (t)  Rm is measurable.  

Then transform the original system (1) into the regular form 

through the new coordinates (7) as  

 

   

   

( )     ( )

 ( )         ( )

g gW A A t W W A A t Bz z

S A A t W S A A t B

 +  +    
= +    

 +  +      

 

    
            

         

              ( ) ( ( ), , )
  

g g

d d d d d

dd d d d

g g

d

W A A W W A A B z

S A A W S A A B

W B W B
u t x t x t

SB SB

 +  +         
   

+  +           

   
+ +    

   
   

 (8) 
 
According to (6), equation (8) can be represented as 

 

   

   

   

   

( ) ( )

        

( ) ( )

       

          ( ) ( ( ), , ),

g g

g g

d d d d d d

d d d d d d

d

z W A A t Wz W A A t B

W A A Wz W A A B

S A A t Wz S A A t B

S A A Wz S A A B

u t x t x t

= +  + +  

+ +  + +  

 = +  + +  

+ +  + +  

+ + 

           
 (9) 

 

where ,  ,  ,  and .g g

d d d d
z W x Sx z W x Sx=  = =  =   

The equation (9) is rewritten 

   

 

 

   

   

( ) ( )

        ,

( ) ( )

       

          ( ) ( ( ), , ),

g g

g g

d d d d d d

d d d d d d

d

z J W A t W z W A A t B

J W A W z W A A B

S A A t Wz S A A t B

S A A Wz S A A B

u t x t x t

 = +  + +   

 + +  + +   

 = +  + +  

+ +  + +  

+ +        

(10) 
 

where ,  .g g

d d d
J A W AW J A W A W= = = =  

B. Design of the Finite Time Sliding Mode Controller  

In this section, we will have three tasks. Firstly, the suitable 

ROO is constructed to estimate the unmeasurable states. 

Secondly, a FTSMC is designed by utilizing the estimated 

states and measured output. Finally, the design algorithm is 

also established to satisfy the reachability condition, that is,  

                                                              

( ) ( ) ( ) ,T t t t   −               

(11) 

 

where   is positive scalar;  ( ) ( )t Fy t =  is the sliding 

function.  

In order to estimate unmeasurable states, we propose 

suitable reduced-order observer for uncertain time-delay 

system (1) as follows 
 

ˆ ˆ ˆ( ) ( ) ( ) ,g g

d d d d
z t Jz t J z W AB t W A B= + +  +         

(12) 
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where ˆ
ˆ ˆˆ( ) ( ) ( )g

z
z t t W t = =  with [ ,0].t d −  Let the 

estimate of ( )z t  and d
z  be denoted by ˆ( )z t  and ˆ ,

d
z   

respectively. An error difference between the estimate state 

and the true state be defined by ( ),e t  i.e., ˆ( ) ( ) ( ).e t z t z t= −  

Then, using the first equation (10) and equation (12) lead to 

the time delay observer error as 
 

( ) ( ) ( ) ( ) ( )

          ,

g g

d d

g g

d d d d

e t Je t J e W A t Wz t W AB t

W A Wz W A B

= + −  −  

−  −  
        

(13) 

 
 

where ( )ˆ( ) ( ) ( ) ( ) ,  0.g

e
e t t W t t d t  = = − −      

Now, we divide the problem of controller design into two 

cases including matched and mismatched uncertainties, 

respectively. The corresponding results will be considered in 

the following cases. 

 

Case 1. Design the FTSMC for the matched uncertain 

time-delay system  

If the uncertain terms ( )A t  and d
A satisfy the matching 

condition. The regular form of the system (1) can be 

represented as  

 

( ) ( ) ( ) ,g g

d d d d
z t Jz t W AB t J z W A B= +  + +              

(14) 

 

( ) ( ) ( )

           ( ) ( ( ), , ),

d d d d

d

t SAWz t SAB t SA Wz SA B

u t x t x t

 = +  + + 

+ +    
        

(15) 

 

where ( , )x t  represents the lumped uncertainties and/or 

nonlinearities. 

The error dynamic equation (13) can be reduced as follows 

 

( ) ( ) ,
d d

e t Je t J e= +                   

(16) 

 

Referring to [25], one can see that the error dynamic (16) is 

asymptotically stable if there exist symmetric matrices 

1
0K   and 2

0K   such that the following LMI satisfies 

 
1

1 1 2 1

1 2

    
0

                      

T

d

T

d

JK K J K K J

J K K

− + +
 

−  

            

(17) 

 

Remark 2. As a sliding mode, ( ) 0,
d

t =  =  incurs in the 

system (14), we obtain ( ) ( ) .
ddz t Jz t J z= +  Thus, the 

uncertain system (14) is asymptotically stable in sliding 

mode when it satisfies the LMI (17). 

In order to use the estimated variables and observer error 

in controller design, we establish the following Lemma 4. 

 
Lemma 4. Let error (0)e  be an initial condition of the error 

( ).e t  The norm of estimation error ( )e t  is bounded by 

1
( )t  for all time. The term 1

( )t  is the solution of 

 

1 max 1 1
( ) ( ),

d
t k J t   =  +              

(18) 

 

where 
1 max 1
(0) (0) ,  0

d
k e k J   =  +   and max

  is 

the maximum eigenvalue of .J  
 
Proof of Lemma 4.  By solving (16) to yields 

 

( ) ( )
0

( ) exp (0) exp ,
t

d d
e t Jt e J t J e d  + −     

      

( ) ( )max max
0

exp (0) exp

    

t

d d

k t e k t

J e d

   +  −  

 

      

(19) 

 
For the inequality (19), we multiply both sides by the term 

( )max
exp ,t−  then 

 

( ) ( )max max
0

exp (0) exp

                             

t

d d

e t k e k

J e d

−  + − 

 

        

(20) 

 

Based on Lemma 3 of  [26], we have 
1

( )  
d

e e t  for 

some scalar 1
1 . Let ( )max

exp t−  be the right-hand side 

term of the inequality (20), we attain 
 

( )max 1
( ) (0) exp ,

d
e t k e k J t   +

 
 

      ( )max 1
(0)exp

d
k J t   +

 
          

      1
( )t=                 

(21) 

 

Thus, ( )e t  is bounded by 1
( )t  for all time.    

Now, we design control input ( )u t  in system (15), the 

control input will be appropriately designed with the help of 

the ROO tool (12). 
 

Theorem 1. The matched uncertain system (14), (15) under 

the output feedback controller 
 

 

1

1 2 1 3 4

( ) ( )

( )
ˆ      ( ) ( ) ( )

( )
d

u t u t

t
k t k z t t k k

t

=


 = −  − + + +   


  (22) 

 

reach the switching surface (t) = 0 in finite time and stay on 

it thereafter if the constant gains satisfy the following 

conditions 
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( )

1

2 1 1

3

4

,

1 ,

,

,

m

d m

m d

k k B SAB

k SAW SA W k W

k k

k k B SA B

 




 +

 + + +

 +

 +                  

 

(23) 

 

where  > 0, 1
( )t  is defined in Lemma 4, and k1, k 2, k 3 , k 4 

are constant gains.  
 

Proof of Theorem 1. From state transformation (7) implies 

that  
 

( ) ( ) ( ),  

d d d

x t Wz t B t

x Wz B

= + 

= + 
                   

(24) 

 
Since ˆ( ) ( ) ( ),z t z t e t= −  ˆ ,

d d d
z ez = −  and 

1
( ) ( ).e t t  In 

addition, it follows from the reference [26] that for any 

solution ( ( ))x t d t+ of (1), there exists a constant 1
1   such 

that 
1

( ) .
d

z z t  Therefore, the equation (24) can be 

rewritten as 

 

1
ˆ( ) ( ) ( ) ,  

ˆ .
d d d

x t W z t B t

x W z B

  + +  

 + 
          

(25) 
 

We consider the Lyapunov function ( ( )) 0.5 ( ) ( ).TV t t t =  
 

It follows from (25), Assumption 4, and the equation of the 

system (15) that 

 





( ) ( ) ( ) ( )

                  ( ) ( ( ), , )

T T

d d d d

d

t t SAWz t SAB t SA Wz SA B

u t x t x t

  =  +  + + 

+ + 
 

               

 

( )


( )(
) ( )

1 1

1

1

1

ˆ( ) ( ) ( )

  ( ) ( ) ( )

ˆ    ( ) ( )

       ( ) ( ) .

d

T

d d

m

d

t SAW SA W z t t

SA B SAB t t u t

t k k W W z t

t B t



   +  + 

+  +  + 

+  + + 


+ +  + 





  (26) 

 

Then, using the controller in (22) and (23) implies that the 

reachability condition (11) is required. Accordingly, 

( ) 0t = will be reached within finite time by Lyapunov 

stability theory. The proof is ended.               

 

Case 2. Design the FTSMC for the mismatched uncertain 

time-delay system 

In this case, we will extend the design techniques 

advanced in Case 1 for the mismatched uncertain system with 

a time delay. Assume that the uncertain terms ( )A t  and 

d
A  do not satisfy the matching condition. Generally, the 

time delay observer error dynamics can be abridged as (13).  

Lemma 5. Consider the error dynamic of equation (13). Let 

max  be the maximum eigenvalue of J. Then, the following 

two statements hold:  

 (a) 
max

exp( ) exp( )Jt k t   for some k > 0.  

 (b) ( )e t
 
is bounded by 2

( )t for all time, where 2
( )t  is 

the solution of  

 

( )

( )

2 2 2
( ) ( )

             ( ) ,

g g

d d

g g

d d d

t t k W D EW W D E W

k W D EB t W D E B

=  + +

+  + 

   
    (27) 

 

where  is constant, 
max 2

0,
d

k J =  +   and 2
(0)η   

(0) 0.k e    

 

Proof of Lemma 5. Since all the eigenvalues of J are real 

negative, therefore 
max

0,   and (a) can be obtained 

immediately. Now, we will mainly prove (b). Solving (13) to 

yield 
 

( )

0

(0)

        ,

t

Jt J t g g

d d

g g

d d d d

e e e e J e W AWz W AB

W A Wz W A B d

− + +  +  

+  +   


 

     

 max max

0

exp( ) (0) exp ( )

    

       .

t

d d

g g g

d d

g

d d

k t e k t J e

W AWz W AB W A Wz

W A B d

  +  − 

+  +   + 

+   



    (28) 

 

Multiply the term max
exp( t)−  to both sides of (28) gives 

 

 (

max

max

0

exp( )

    (0) exp ( )
t

d d

e t

k e k t J e

−

 +  − 
 

)

          

                .

g g g

d

g

d d d d d

W D EW z W D EB W D

E W z W D E B d

+ +  +

 +  
        

                        

(29) 
 

Based on Lemma 3 of  [26], we have 
2

( )  
d

z z t for 

some scalar 2
1  . In addition, assume that there is a 

positive constant  such that ( )z t    The inequality (29) 

can be rewritten as    

 

 

( )(
)

max

max

0

2

( ) exp( )

    (0) exp ( )

        

          ( ) .

t

g g

d d d d

g g

d d d

e t t

k e k t

J e W D EW W D E W

W D EB t W D E B d

−

 +  − 

 + +

+  +  



 

  (30) 

 

Shift the term max
exp( )t−  to the right-hand side of 

inequality (30), then 
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( )

( )( )

( )

2 max 2

2 max 2
0

2

( ) (0)exp

            exp

              

                 

d

t

d

g g g

d d

g

d d d

e t k J t

k k J t

W D EW W D E W W D

EB W D E B d

   +
 

+  + − 

 +  +


  +  




 

 


            

 

           2
( ),t=                       

(31) 
 

where 2
( )t  satisfies (27). Therefore, Lemma 5 is proved.   

 In the next step, the control law is continuously designed to 

make the system remain on the sliding surface, which based 

on the help of ROO tool (12) and the result of Lemma 5. 

Now, assume that the FTSMC is of the following form  
 

( )

2

1 2 2 3 4

( ) ( )

( )
ˆ      ( ) ( ) ( ) ,

( )
d

u t u t

t
k t k z t t k k

t

=


 = −  − + + + 
  


(32) 

    
where 2

( )t  is defined in Lemma 5,   is positive scalar, and 

1
k , 

2
k , 

3
,k

4
k

 
are constant gains and will be designed later.  

 
Theorem 2. Consider the mismatched uncertain system with a 

time delay (9) subject to all assumptions. If the error dynamic 

(13) satisfies Lemma 5 and the switching matrix F satisfies 

the equation S = FC, then under the control law (32), the 

mismatched uncertain system (9) is driven to the switching 

surface Fy = 0 in finite time and maintains the sliding mode 

when the constant gains satisfy the following conditions 
 

( ) ( )

( )

1

2 2 2

2

3

4

,

1

        1 ,

,

 .

m

d d d

m

d d d m

k SAB SD EB k B

k SAW SA W SD E W

k W

k k

k SA B SD E B k B



 + +

 + + +

+ +

 +

 + +

 





      

(33) 

Proof of Theorem 2. The Lyapunov function candidate is 

selected as ( ( )) 0.5 ( ) ( ).TV t t t =    Then, differentiating 

( ( ))V t  with regard to time and using the second equation 

(9), we have 

 



2

( ( )) ( ) ( ) ( ) ( )

                ( )

                   ( ) ( ( ), , ) .

T

d d

d d d d

d d d

V t t SAWz t S A t Wz t SA Wz

S A Wz SAB S A t B SA B

S A B u t ξ x t x t

 =  +  +

+  +  +   + 

+   + +

     (34) 

 

Similarly, with the state transformation T  in (7), 

ˆ( ) ( ) ( ),z t z t e t= −  ˆ ,
d d d

z ez = −  
2
,e   and 

2
( )

d
z z t  

for some scalar 2
1   implies that 

 

( )

( )

2

2 2

ˆ( ) ( ) ( ) ( ) ,

ˆ( ) ( ) .
d d

x t W z t t B t

x W z t t B

 + + 

 + + 



 
          

(35) 

 

Substituting the controller (32), gains (33), and (35) into the 

equality (34), we obtain  

 

( ) (

) ( )

( ) 
( )2

( ( )) ( ) ( )

               ( )

                 

                   ( ) ( ) ( ( ), , ) . 

d

d d d

d d d d

T

d

V t t SAW SD EW z t SA W

SD E W z SAB SD EB t

SA B SD E B

u t t ξ x t x t

   + +

+ + + 

+ + 

+  + 

 

        

 

             
. −                                          

(36) 

 
Thus, if ( ) 0t  , the reachability condition (11) is satisfied, 

which means that the sliding mode can be maintained by the 

FTSMC (32). This completes the proof of Theorem 2. 

C. Establish the Procedures for Controller  

Now, we summarize the all steps for the FTSMC in two 

cases that including matched and mismatched uncertain 

systems with a time delay as 

Step 1. By selecting S = Bg and computing the sliding matrix 

F such that equation FC = S is satisfied.  

Step 2. Replacing the matrix F   into equation (2), the sliding 

function ( )t  is found. 

Step 3. The ROO ˆ( )z t  is designed as equation (12). 

Step 4. The FTSMCs are synthesised as follows: 

For case 1 (matched uncertainty): Determine the upper 

bound of observer dynamic error 1
( )t  as (18). Then, design 

of the FTSMC ( )
1

u t  according to equation (22). 

For case 2 (mismatched uncertainty): Determine the 

upper bound of observer dynamic error 2
( )t  as (27). Then, 

design of the FTSMC ( )
2

u t  according to equation (32). 

IV. STABILITY ANALYSIS IN SLIDING MODE 

Now, we are in the position to derive sufficient conditions 

in terms of LMI such that the first equation (10) is an 

asymptotically stable. Let us begin with considering the 

following LMI: 

 

( )

1

1

2 1

1

                                  

                                           

                           

                                      

     

T T

d d

d d

T

T

d

   E E HD HD

E I 0 0 0

E 0 I 0 0

D H 0 0 I 0

D H 0

−

−

−



− 

− 

− 



1

1

0,

                                
d

0 0 I−

 
 
 
 

 
 
 
 − 
 

                (37) 

 

where 1 x

2 1 2
,  T T (n-m) (n-m)

d d d d
A H HA H A HA H R− = + +  +    

is any positive matrix, and the scalars 1
0,  0,

d
      

2 1
 0,  1,

d
    and 2

1.   Then, we can establish the 

following Theorem 3. 

 

 

 

 

 

http://www.ijeat.org/


International Journal of Engineering and Advanced Technology (IJEAT) 

ISSN: 2249-8958 (Online), Volume-6 Issue-3, February 2017 

147 

Published By: 
Blue Eyes Intelligence Engineering  

and Sciences Publication (BEIESP)  

© Copyright: All rights reserved. 

Retrieval Number C4862026317/17©BEIESP 
Journal Website: www.ijeat.org 

Theorem 3. Suppose that LMI  (37) has a solution 0,H   the 

scalars 1 2
0,  0,  0,

d d
       1

1,   and 2
1.   The 

sliding function is given by equation ( ) ( ).t Fy t =  Then, the 

first equation of the closed-loop system (10) exhibits an 

asymptotically stable sliding mode. 

 

Proof of Theorem 3. In the sliding mode, we have ( ) 0t =  

and ( ) 0.t =  The first equation of  (10) can be rewritten  

 

( ) ( ) ,
d d d d d

z t A DΣE z t A D Σ E z   = + + +                

(38)              
      

where ,  ,  ,g g g

d d d
A J W AW A J W A W D W D= = = = =  

,  ,g

d d
D W D E EW= =   and .

d d
E E W=   

To analyze the stability of the sliding motion (38), we 

consider the following Lyapunov function candidate  

 

( ) ( ) ( )TV t z t Pz t=                             

(39) 

 

Then, taking the time derivative along the state trajectory of  

(39), we have 

 

( ) ( ) ( )

           ( )

              ( ) ( )

T T T T T

T T T T T T T

d d d d d d d d

T T T

d d d d

V t z t A H HA E Σ D H HDΣE z t

z E Σ D Hz t z HD Σ E z

z t HA z z A Hz t

 = + + + 

+ +

+ +

       (40) 

 

Now, we are going to prove ( ) 0.V t   By using Lemma 1, it 

follows from equation (40) that 

 
1

1

1 1

( ) ( ) ( )

           ( ) ( )

              ( ) ( ).

T T T T

T T T T

d d d d d d d d

T T T

d d d d

V t z t A H HA HDD H E E z t

z t HD D Hz t z E E z

z t HA z z A Hz t

−

−

  + +  +  

+  + 

+ +

        (41) 

          

  

By virtue of Lemma 2, inequality (41) is equivalent to 

          

1 1

2

1

1 1 2

( ) ( )

         .

T T T T

d

T T T T

d d d d d d d d d d d

V t z t A H HA HDD H E E H

HD D H z z E E A HA z

− −

−

 + +  +  + 

 +  +  +   

 (42) 

  

According to Assumption 3, E  is a free-choice matrix. So, 

we can easily select matrix E  such that the matrix TE E  is 

semi-positive definite. Then, from the Lemma 3 of [26], the 

following is true 

                                                        
1

T T T T

d d d d d d
z A HA z z A HA z             

(43) 

 

for some 1
1,   which implies that 

                                                            
2

,T T T T

d d d d d d
z E E z z E E z

                                                 
 (44) 

 

where the scalar 2
1.   Thus, from inequality (42), (43), 

and (44),  we achieve 

 

1

2 1 2

1 1

2 1 1

( )

            . 

T T T T

d d d d

T T T

d d d d d d

V t z A H HA H A HA E E

HDD H E E HD D H z

−

− −

 + +  +  + 

+  +  +  




   (45) 

                

  

Then, by the application of Lemma 3 to LMI (37), we have 

 
1

2 1

1

1
    0.

T T T

d d d

T

d d d

E E E E HDD H

HD D H

−

−

 +  +  + 

+  


           (46) 

 

After all, from equation (45) and (46), it is obvious that 

 

( ) 0.V t               (47) 

The inequality (47) implies that if LMI (37) is feasible, the 

system (10) in the sliding mode is asymptotically stable.     

V. CONCLUSION 

This paper deals with the VSC design problem for a class 

of matched and mismatched uncertain systems with a time 

delay. The suitable reduced-order observer has been 

constructed, which ensures that the conservatism is reduced, 

and the robustness is enhanced in comparison with FOO. The 

FTSMC for reaching motion has been designed such that the 

trajectories of closed-loop system can be moved onto the 

sliding surface and maintained there in finite time. Finally, by 

employing the Lyapunov stability theory and LMIs 

technology, the resulting sliding mode dynamics is 

asymptotically stable under sufficient condition established. 
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