
 International Journal of Engineering and Advanced Technology (IJEAT)

 ISSN: 2249-8958 (Online), Volume-6 Issue-4, April 2017

1

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number D4873046417/17©BEIESP
Journal Website: www.ijeat.org

Abstract: Images and scanned text documents are gradually

more used in a vast range of applications. To reduce the needed

storage or to accelerate their move through the computers

networks, the document images have to be compressed.

Traditional compression mechanisms, which are generally

developed with a particular image type and purpose, are facing

many challenges with mixed documents. This paper describes a

statistical block-based technique for an automatic document

image segmentation and compression. Based on the number of

detected colors in each region of the image, this approach creates

a new representation of the image that can produce very

highly-compressed document files that nonetheless retain

excellent image quality. The proposed algorithm segments the

compound document image into blocks of equal size. The blocks

are classified into seven different categories. Each category

represents an image part that shares the same properties. A new

representation of each category is formed and the similar adjacent

blocks are merged to form labeled regions sharing the same

properties. At the end, to achieve better compression ratio, the

different regions of the image are compressed using different

compression techniques.

Index Terms: Adaptive Compression, Block-Based

Segmentation, Image Document Compression, Image

Segmentation, Lookup Dictionary Table (LUD).

I. INTRODUCTION

 Scanned text documents are increasingly used in a wide

range of applications, including but not limited to archiving

systems and document management systems. Many of these

documents, called compound or mixed documents, consist of

a mixture of texts, pictures, graphics (drawing), and

background. The storage requirements of uncompressed high

quality color scanned documents are indeed quite vast. This

can sometimes cause for document transformation and

storage. And unfortunately, managing such uncompressed

documents proves to be inefficient and creates the potential

effect of substantially limiting their benefits and may perhaps

never meet the ever-growing information demands of the

users. As a standard A4 color page document, scanned with a

resolution of 600 dpi, requires around 91 million bytes of

storage space, assuming 24 bit-depth and a standard 8 X 12

inches sheet. Therefore, to reduce the space occupation or to

Manuscript published on 30 April 2017.
* Correspondence Author (s)

Nidhal Kamel Taha El-Omari, WISE University, Faculty of Information

Technology, Amman, Jordan, nidhal.omari@wise.edu.jo

Ahmad H. Al-Omari, Northeren Border University, Faculty of Science,
Computer Science Division, Saudi Arabia, kefia@yahoo.com

Ali Mohammad H. Al-Ibrahim, WISE University, Faculty of
Information Technology, Amman, Jordan, ali.alibrahim@wise.edu.jo

Tariq Alwada’n, WISE University, Faculty of Information Technology,

Amman, Jordan, tariq.alwadan@wise.edu.jo

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

speed up their transfer through the computers networks, the

document images need to be compressed. Traditional

compression mechanisms, which are generally developed

with a particular image type and purpose, are facing many

challenges with mixed documents. Unfortunately, these

documents do not compress well using classical image

compression algorithms such as JPEG-2000. This is due to

the presence of sharp edges on top of the smooth surfaces of

the text and graphics, typically found in natural images. What

is more, compression algorithms for text facsimiles, such as

JBIG2, are not suited for color or gray level images.

[1,2,3,4,5,16,18,25]

 Image segmentation plays an important role in

compression of scanned documents, which is to part an image

into different meaningful regions or clusters which have

similar features [2,3,1,19,20,21,22,25]. In this paper, we

tackle the problem of segmenting and compressing mixed

(compound) digital documents. In order to compress it more

effectively, the proposed technique segments the image into

seven different types of components. Every image

component is a homogenous region (or regions) having

“common features” like color gamut and number, shape,

pixel intensity, region formation, text occurrence, grey level,

and others [20]. All segmented regions are non-overlapping

[25]. In order to achieve better compression ratios, every

component is compressed separately using the most

appropriate compression technique. This approach differ

from previous ones such as DjVu, Tiff-FX, and MRC, by

being extremely simple and fast, while yielding close to and

in many cases better than the state-of-the-art compression

performance [6,7,9,10,14].

This work is indeed a continuation of the previous works in

the area of document image segmentation and compression

[2,3,16]. To explore further the arguments set out above, this

paper is divided into six sections. While this section provides

an introduction to the main theme of the paper, the rest of the

paper is organized as follows. Section 2 looks at the related

work and algorithms used. Section 3 presents the approaches

developed in this research. In Section 4, the algorithm of this

proposed solution is presented. Then, Section 5 presents the

training results and describes the analysis of the results .

Finally, Section 6 provides the conclusions and offers

avenues for future work.

II. BACKGROUND

Image segmentation of a mixed document aims to separate

background, text, pictures, and graphical components of a

document image [1,2,3]. However, the union of these various

image components generates the original document. There

are different techniques proposed in the literature to solve the

problem of segmenting and compressing compound

documents.

Text-Image Segmentation and Compression

using Adaptive Statistical Block Based Approach
Nidhal Kamel Taha El-Omari, Ahmad H. Al-Omari, Ali Mohammad H. Al-Ibrahim, Tariq Alwada’n

http://www.ijeat.org/
mailto:nidhal.omari@wise.edu.jo
mailto:kefia@yahoo.com
mailto:ali.alibrahim@wise.edu.jo
mailto:tariq.alwadan@wise.edu.jo
mailto:tariq.alwadan@wise.edu.jo
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/

Text-Image Segmentation and Compression using Adaptive Statistical Block Based Approach

2

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number D4873046417/17©BEIESP
Journal Website: www.ijeat.org

 These techniques can be classified into three different

categories that Fig. 1 illustrates.

The first category of algorithms transforms the document into

a black and white image. These algorithms are designed to

scan and store documents in black and white colors. Then

these images are decoded using lossless decoders, such as

“Fax Group 3” and “Fax Group 4”. Although they achieve

high compression rate and preserve text legibility, they lead

to the losing of contrast and color information. They may be

suitable for some business and technical documents, but

unsuitable for other document types such as magazines or

historical documents [4,6,7,9,10,5].

The other category uses algorithms that are only designed for

one type of content. Some of them are designed to compress

pure text images which contain only text on pure color

background of the whole image. These algorithms show bad

performance on pure picture images. An example of such an

algorithm is Lempel-Ziv algorithm. Others algorithms are

designed for pure picture images which do not have any text

in the whole image. Alternatively, they have bad

performance on pure text images. An example of them is

JPEG. [11,12,13,14,16,18,23,25]

Since no single algorithm gives good results across all image

types or applications, a third category of algorithms is needed

to compress compound images with different content types:

picture, graphics, and text. Although these algorithms are

proposed to solve the drawbacks of the previous two

categories, they do not reach the ideal situation. The

algorithms of this category are further categorized into two

groups: the Layered encoding and the block-based encoding.

[2,1,23]

The Layered encoding methods separates the images into

different layers and each layer is being encoded

independently from the other layers. Most Layered encoding

methods use the standard three layers Mixed Raster Content

(MRC). As illustrated in Fig. 2, the three layers are: an image

BackGround layer (BG), an image ForeGround layer (FG),

and a binary mask layer. The mask classified the image

components as either ForeGround or BackGround

components. While the ForeGround components are coded

by the ForeGround coder, the BackGround components are

coded by the BackGround coder. Examples of this group of

methods are LuraDocument and DjVu techniques.

[2,6,14,7,9,4,10,15,11,12]

However, the Layered encoding methods still have some

drawbacks. The complexity of layer generation is high, that

makes it unsuitable for many embedded and real time

applications [14,13,12,11]. These techniques tend to classify

the text in the image as the ForeGround and all other details

as the BackGround. Binary representation of the mask layer,

that encodes the text and the graphics contents, tends to

distort some fine document details, such as text edges and

thin lines [9,6,7]. Although ForeGround and BackGround

layers may not be used, they should also be coded; this adds

some inefficiency [12,11,14,6]. Unfortunately, some

foreground components may be classified as belonging to the

background layer [4,9,12,11,14,6]. By contrast, some

background components may be classified as belonging to

the ForeGround layer [4,9,12,11,14,6].

 Moreover, layer based approaches work well on simple

compound images. But when the content is very complex,

they show poor performance. For example, it is difficult to

separate text from backgrounds when the text overlaps with

background or the text has surrounding shadow.

[11,12,15,6,14,7]

 The block-based approaches, which are generally used for

their low complexity, classify the compound image into

blocks of different types. Then each type is compressed

individually with the most off-the-shelf appropriate encoder

technique. Although these methods give better results than

the previous group, there are still some drawbacks. In case of

strong edges in the textual area, they lead to hybrid blocks.

These hybrid blocks contain mixed text and pictures that

cannot be handled effectively. Even if the block contains a

boundary between two regions, all of its pixels are classified

in the same manner and given the same label. Although the

complexity is lower than Layered encoding techniques, both

the classification and compression algorithms of block-based

encoding still have high calculation complexity, which

makes them not suitable for real time applications.

[12,11,13,17,23]

Furthermore, the block-based segmentation approaches can

be further divided into two groups: variable-size and

fixed-size blocks [2,23]. This paper indeed use the

equal-size-square blocks. Accordingly, there is still much

room for improving existing algorithms or coming up with

new effective algorithms and techniques which is described

in this research paper. However, there is a need for an

effective way to classify image components and to compress

its content.

Algorithms

designed for

compound

images

Algorithms

designed for

images with

only one type

of content

Block-based

encoding

Algorithms

designed for

pure text

images

Layered

encoding

Algorithms

designed for

pure picture

images

Change the

color of the

document to

black and

white

Segmentation Approaches

Figure 1: Compressing Compound Documents

Approches

http://www.ijeat.org/

 International Journal of Engineering and Advanced Technology (IJEAT)

 ISSN: 2249-8958 (Online), Volume-6 Issue-4, April 2017

3

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number D4873046417/17©BEIESP
Journal Website: www.ijeat.org

Read the scanned input image

I=0

I=I+1

Yes

I=last block?
No

Compressing … (phase 5)

Preliminary Processing (phase 1)

Divide the input image into equal-size-square blocks

Read the ith block

Merging … (phase 4)

Construct the color matrix for the ith block

Data Rearrangement of the ith block (phase 3)

Define the type of the ith block (phase 2)

 End

 the ith

block

Start

III. THE TECHNIQUE DESCRIPTION

The proposed technique divides the scanned image into

equal-size-square blocks and compresses them in a way that

can restore the blocks again such that each and every piece of

data that was initially in the blocks stays after the document is

decompressed. It works in a sequence of five phases:

preprocessing phase, image segmentation and classification

phase, rearrangement phase, merging phase, and

compression phase. These phases are illustrated through the

flowchart of Fig. 3 which they form the backbone framework

for the proposed technique. Since each and every bit is

returned back to its original form after the document is

decompression, this proposed algorithm is a lossless

compression technique [2,23,25]. Therefore, this algorithm is

suitable to be used where losing data or monetary information

could represent an issue [25].

A. Phase I: Data Perpetration

The original data set is subjected to a number of preliminary

processing steps in order to make it operates accurately and

usable by the next phase. Therefore, this stage determines the

success of this technique. This includes data collection and

partitioning, pre-processing, post-processing (i.e.

De-normalization), and all the primarily operations that are

used for reducing noise or variations inside the scanned

image.

B. Phase II: Assigning Labels

The image is divided into equal-size-square blocks. A matrix

of an RGB color map of each block is generated. This matrix

represents the colors and their frequencies. However, colors

with low frequency may be considered as noise. As a

consequence these low frequency colors will be eliminated.

Each block is assigned a label or a type. This assignation is

based on the analysis of the distribution and number of

colors; such that pixels with the same label share certain

characteristics [18,19,20]. Typically, all blocks that make up

of the same number of colors are given the same label or type.

Based on this, there are seven types:

1 . Type “A” represents the blocks that contain only one

color, considered as background. These blocks

represent, in general, the background of a document

image which is a large expanse of a single color.

2 . Type “B” represents the blocks that contain two

colors. The blocks of this category usually represent

the text regions.

3 . Type “C” represents the blocks that contain three or

four colors.

4 . Type “D” represents the blocks that contain from 5 to

16 colors.

Practically, the last two categories “C” and “D”

represent mainly the drawing parts of the documents

where we find generally the graphs, charts, and

curves.

5 . Type “E” represents the grey blocks that contain from

17 to 256 grey colors. These blocks are mainly the

grey part of the image.

6 . Type “F” represents the blocks containing from 17 to

256 RGB colors. The blocks of this type usually

represent the picture regions.

7 . Type “X” represents all the other cases where each

block contains more than 256 colors. These blocks

represent in general the millions of colors pictures

found in the images.

For the scanned image, N, let the numbers of blocks for the

types “A” , “B”, “C”, “D”, “E”, “F”, and “X” are: NA , NB ,

NC , ND , NE , NF , and NX , respectively. Then, the total

number of blocks is defined as:

N = NA + NB + NC + ND + NE + NF + NX (1)

C. Phase III: Tables Forming

The eventual goal of this phase is to get a new representation

of each block. The new generated data of each block is based

on the content of each block. The output of this phase is a

table where each row represents a single block of the original

input image. The content of this table depends on each block

type. To explore further details, this phase is described in the

following subsections (1. through 3.) below:

1. Types “C”, “D”, “E” and “F”

This phase for these types depends on storing the detected

colors within each block inside a special dictionary

constructed specifically at the level of that block. Then, rather

than storing the colors, the reference pointer indexes are used.

Each reference pointer points out to a specific color inside

this dictionary. These reference pointers are typically

implemented by means of a Lookup Dictionary Table (LUD).

Figure 3: Proposed Technique Flowchart

http://www.ijeat.org/

Text-Image Segmentation and Compression using Adaptive Statistical Block Based Approach

4

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number D4873046417/17©BEIESP
Journal Website: www.ijeat.org

Each pointer is used as an indication of where to decompress

the original block. The numbers of needed bits for each

pointer are 1,2,4,8 for the types “B”, “C”, “D”, and “F”,

respectively.

At the decoder side and through the decompression process,

when the computer read the compressed file and encounters a

pointer, it interprets that pointer by retrieving the

corresponding color from its place in the dictionary index of

that block. So the original image is retrieved up to the last bit.

Since type “B” has two color layers, the dictionary contains

six cells one cell for every basic color component of the RGB

color model. Fig. 4 shows the representation of the data

structure of type “B”. The blocks in Fig. 4 are represented by

the address (I, J) for each block, the 2-color dictionary, called

BackGround (BG) and ForeGround (FG) colors, and only

one bit for each individual pixel to indicate whether it is

assigned to either the BackGround or the ForeGround colors.

This individual bit is set to either zero if it belongs to the

BackGround color or one if it belongs to the ForeGround

color.

The three types, “C”, “D”, and “F”, are similar to type “B”.

Fig. 5 illustrates the representation of data in these types. The

following points should be noted:

• Since every color has three RGB components, the

dictionary of type “C” has 4 * 3 = 12 cells (bytes). In

view of that, each block is represented by the pair (I, J)

where I and J represent the column and row numbers

respectively; as well as the 4-color dictionary, and

two-bit reference pointer for each individual pixel to

designate a specific color from the four colors of the

dictionary. The value (00)2 points out to the first row

in the color map, the value (01)2 points out to the

second row, the value (10)2 points out to the third row

and the value (11)2, which is (3)10, points out to the

last row. In case of there are only three colors, the

fourth color is assumed to be null.

• As discussed beforehand, the dictionary of type “D”

blocks has 16 * 3 = 48 cells. Once more, each block is

represented by the pair (I, J), the 16-color dictionary,

and four-bit reference pointer for each individual pixel

to designate a specific color from the sixteen colors of

the dictionary. The value (0000)2 points out to the first

color in the dictionary, the value (0001)2 points out to

the second color and so on up to the value (1111)2,

which points out to the last color. In the special

dictionary, if there are colors less than 16 and more

than 4, they are fulfilled to 16 colors using null values.

• The dictionary of type “F” blocks has 256 x 3 = 768

cells (bytes). Like other types, if there are colors less

than 256 and more than 17, they are completed to 256

colors using null values. Each block is represented by

the pair (I, J), the 256-color dictionary, and eight-bit

reference pointer for each individual pixel to

designate a specific color from the 256 colors of the

dictionary. Thus, the value (00000000)2 points out to

the first color, the value (00000001)2 points out to the

second color and so on up to the value (11111111)2,

which points out to the last color.

2. Type “A”

Since type “A” blocks have only one color, the dictionary

contains only three cells, one for every basic color

component of the single RGB color. Rather than saving the

same information for every individual pixel that makes up the

BackGround, this approach stores the color data for the

BackGround color only once to refer to all pixels of that

block. Fig. 6 illustrates how the data is constructed in this

type.

For this type, each block is represented by its address (I, J),

and the three RGB components of its unique color. As the

image is equal-size-square blocks, the size information,

“blocklength”, is only stored once at the first location of the

compressed file of this type.

3. Types “E” and “X”

A block is obviously identified as grey if the values of the

three basic RGB components in all pixels of the block are

almost equal. Rather than repeating the same information for

the three repeated RGB color components, one component is

enough to represent the other two components. The red

component is therefore used to represent the other two

components. Accordingly, neither the special dictionary, nor

the reference pointers (LUD) are needed for type “E” blocks.

Rather, the actual red component of the original block is

selected and directly stored as it is without any reshaping or

rearrangement.

Figure 4: Data Structure for Type “B”

Figure 5: Data Structure for Types “C”, “D”, and

“F”

Pixels'

Data

Block

Address

I value

J value

Red component of 1st color

Green component of 1st color

Blue component of the 1st color

Red component of the 2nd color

Blue component of the last color

Pixel Representation

Using Pointers) LUD)

Dictionary

BG

FG

Block

Address

I value

J value

Red component of the 1st color

Green component of the 1st color

Blue component of the 1st color

Red component of the 2nd color

Green component of the 2nd color

Blue component of the 2nd color

Pixels' Data

Dictionary

Pixels 1-8

Pixels 9-16

Pixels' representation of the remaining

pixels (one bit per pixel)

The Block length, “Blocklength”

Red component of the 1st color

Green component of the 1st color

Blue component of the 1st color

Block

Address

Dictionary

(FG)

J value

 I value

Figure 6: Data Structure for Type “A”

http://www.ijeat.org/

 International Journal of Engineering and Advanced Technology (IJEAT)

 ISSN: 2249-8958 (Online), Volume-6 Issue-4, April 2017

5

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number D4873046417/17©BEIESP
Journal Website: www.ijeat.org

Fig. 7 illustrates how the data is constructed in this type of

blocks. Each block is represented by its address (I, J) and the

actual red component of its pixels, where each individual

pixel requires a single byte.

Type “X” is like type “E” but all the three basic RGB

components of the original block are stored while the red

component is only stored in type “E”. The representation of

these blocks is saved by storing the address (I, J) of the block

and the actual pixels' data, where each individual pixel

requires three bytes. Fig. 8 shows the representation of this

type of blocks.

D. Blocks Merging

The merging phase aims to put together the adjacent

equal-type blocks that have the same dictionary of colors into

a larger arrangement of blocks to form higher-level regions.

However, the blocks belonging to the same type don’t

necessary have the same colors, but they may have the same

number of colors. As in Fig. 9, block neighborhoods can be

defined in terms of one of the followings:

• 4-connectivity: in which the two blocks share a common

side.

• 8-connectivity: in which the two blocks share either a

common side or a common corner.

E. Compression

This is last phase in which every region (blocks of similar

features) is compressed separately using the most

off-the-shelf appropriate compression technique.

IV. THE ALGORITHMS

This proposed technique consists of two algorithms: Image

Color Statistic and Color Counts Block-Based Segmentation.

A. The First Algorithm

Algorithm 1 is designed to generate a Color Statistic Table

(CST) for the colors and their frequencies to either the

whole image or one of its blocks. If the pixels of an input

block (I, J) of “blocklength x blocklength” in size and its

pixels are distributed among “n” 3-component colors, then

Table 1 represents the output of this algorithm:

Table 1: Output of Algorithm 1

Red Green Blue Frequency

R001 G001 B001 F001

R002 G002 B002 F002

::::: ::::: ::::: :::::

Ri-1 Gi-1 Bi-1 Fi-1

Ri Gi Bi Fi

::::: ::::: ::::: :::::

Rn-1 Gn-1 Bn-1 Fn-1

Rn Gn Bn Fn

Total Blocklength2

This table is arranged in descending order according to the

last column, “Frequency”, from “F001” to “Fn”. At the

beginning of this algorithm, an empty 4-column table is

created. As the image file is read, this table is altered

whenever a new color is encountered. If the encountered

color is already in the table, its corresponding frequency is

increased by one. Otherwise, a new row corresponding to this

color is created with a frequency equals to one.

Algorithm 1: Image Color Statistic.

Description: This algorithm is designed to build a statistic

about the detected colors and their frequencies that

are found within every block. This statistic represents

the color map or the dictionary of colors.

Input: Either an MxNx3-size BMP image or one of its

blocks.

Output: a colour statistic table (CST) of four columns;

three of them correspond to the three basic RGB

components of each colour and the last one

corresponds to the frequency of that colour. Every

detected colour has one row.

Method:

1) Initialization: construct an empty table “CST” of 4

columns.

2) Read the input image pixels from left to right and top

to bottom.

3) Repeat for each individual pixel of the input file:

If the three basic RGB components are in

“CST” Then

Add 1 to the frequency that corresponds to that

color.

Else

Insert this color in the table “CST” with a

frequency equals to one.

End If

Block

Address

I value

J value

Pixels' Data

Using

pointers

Red component of the 1st pixel

Red component of the 2nd pixel color

Pixels' representation of the

remaining pixels (1 byte per pixel)

Figure 8: Data Structure for Type “X”

I value

J value

Red component of the 1st pixel

Green component of 1st pixel

pixel

Blue component of the 1st pixel

Red component of the 2nd pixel

Green component of the last pixel

Blue component of the last pixel

Block

Address

Pixels' data

Using

pointers

Figure 7: Data Structure for Type “E”

Figure 9: 4-Connected & 8-Connected neighbor Blocks

4-connected

neighbors

8-connected

neighbors

http://www.ijeat.org/

Text-Image Segmentation and Compression using Adaptive Statistical Block Based Approach

6

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number D4873046417/17©BEIESP
Journal Website: www.ijeat.org

B. The Second Algorithm

Algorithm 2 represents the main steps of the technique

discussed in this paper.

Algorithm 2: Color Counts Block-Based Segmentation.

Description: Through this algorithm, the bitmap table of

the original image is divided into seven types

according to the number of colors that are used

inside.
Input: Any BMP image of size MxNx3 that represents a

scanned document.

Output: Compressed Image File.

Method:

1. Initialization: create seven empty tables correspond

to the seven types. Each table is of unsigned integer

type with 8-bit (uint8) length.

2. Preliminary processing for reducing noise or

variations inside the scanned image.

3. Divide the image into equal-size-square blocks.

4. For each block:

a) Using Algorithm 1, construct the color statistic

table “CST”.

b) Check the colors frequencies of the previous

table, “CST”. Practically, colors with low

frequency may be considered as noises and then

eliminated.

c) Determine the type of the block as:

































otherwise. :

colors. RGB 256-17 containsblock theif :

colors.grey 256-17 containsblock theif :

colors. 16-5 containsblock theif :

colors.four or threecontainsblock theif :

. colors twocontainsblock theif :

color. one containsblock theif :

X

F

E

D

C

B

A

If the block type is “A” Then

 Create a new row in the table “A” for this block.

This row contains:

• The block length, “Blocklength”.

• The address of the block: “I” and “J”.

• The values of the three RGB components of

the single detected color of the block.

Else If the block type is “B” Then

Create a new row in the table “B”. This row

contains:

• The address of the block: “I” and “J”.

• A special dictionary for the two detected

colors.

• 1-bit-reference-pointer index to designate

one of the two colors of the dictionary; using

zero for the pixels having the first color and

one for the second color. As a result, one

byte can hold the information of 8 pixels.

Else If the block type is “C” Then

Create a new row in the table “C” for this block.

This row contains:

• The address of the block: “I” and “J”.

• A special dictionary for the four detected

colors. In the case of three colors, the fourth

color is assumed to be null.

• 2-bit-reference-pointer index to designate a

specific color from the four colors of the

stored dictionary. One LUD value from the

binary list {00, 01, 10, 11} is used for each

pixel to point out to its color. One byte can

therefore hold the information of 4 pixels.

 Else If the block type is “D” Then

Create a new row in the table “D” for this block.

This row contains:

• The address of the block: “I” and “J”.

• A special dictionary for the 16 detected colors.

If there are colors less than 16 and more than

4, they are fulfilled to 16 colors using null

values.

• 4-bit-reference-pointer index to designate a

specific color from the sixteen colors of the

stored dictionary. Every 2 pixels require one

byte.

Else If the block type is “E” Then

Create a new row in the table “E” for this block.

This row contains:

• The address of the block: “I” and “J”.

• For each pixel of the block, store only its

red color component. Each pixel, in turn,

requires a single byte.

Else If the block type is “F” Then

 Create a new row in the table “F” for this block.

This row contains:

• The address of the block: “I” and “J”.

• A special dictionary for the 256 detected colors.

If there are colors less than 256 and more

than 17, they are fulfilled to 256 colors using

null values.

• 8-bit-reference-pointer index to designate a

specific color from the 256 colors of the

stored dictionary. Obviously, each individual

pixel requires a single byte.

Else If the block type is “X” Then

Create a new row in the table “X”. This row

contains:

• The address of the block: “I” and “J”.

• The pixels' data that are detected in that block.

Each individual pixel requires three bytes.

End If

5. Do Merging.

6. Do compression.

7. Combine all the seven tables into one table.

V. EXPERIMENTAL RESULTS AND ANALYSIS

Since a reliable system should be experimented on a large

number of samples, a special database that includes different

images was created [24,2]. As illustrated in Table 2, this

database contains 1821 24-bit-RGB-bitmap images of

different resolutions distributed among five classes. Using

MATLAB® version 9.0 release R2016a environments, the

proposed technique has been implemented on this source

database.

http://www.ijeat.org/

 International Journal of Engineering and Advanced Technology (IJEAT)

 ISSN: 2249-8958 (Online), Volume-6 Issue-4, April 2017

7

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number D4873046417/17©BEIESP
Journal Website: www.ijeat.org

Table 2: Classes of the Special Database.

Image Class No. of images

Pure Background 142

Pure Text 320

Pure Graph 350

Pure Picture 370

Mixed Image 639

Total number of images 1821

The Saving Ratio Percentage (SRP) is used as a measure to

evaluate the performances of the proposed technique. It is

defined as follows:

(2) 100%
size image original

size image compressed
1SRP 








−=

This measure depends on the image content that leads to the

distribution of the original table on the seven types. Since the

compression ratios are dependent on the type of each block

which can in turn affected the SRP, the best case is obviously

seen whenever all the blocks are of type “A”, which means

that the entire image is a BackGround of one color. The next

best case is whenever all the blocks are of type “B”, and so

on. However, the worst case is whenever all the blocks are of

type “X”, which means that the entire image is a picture. In

this case, the encoding of this approach is not appropriate and

the system will be flexible to cancel the encoding process and

use another proper encoder.

In case of blocks of type “A”, there is a need to store an

additional one-byte cell to represent the block length,

“blocklength”. Moreover, since the blocks of type “A” have

single color, which is classified as background, there is no

need to store more data about pixels contained in the block.

Hence, neither the special dictionary, nor the reference

pointers (LUD) are needed, only six bytes are required to

store the whole block no matter how much its size. However,

this solves one of the drawbacks of Layered encoding

mentioned at Section 2. The SRP per block of this type is

given by the equation:

(3) 100% *
hblocklengt * 3

 3 2 1
1 SRP(A)

2 






 ++
−=

100% *
hblocklengt

2
1

2 







−=

Where:

1 . Number “1” of the numerator means that one byte is

required to store the “blocklength”.

2 . Number “2” of the numerator means that two bytes

are required to store the address of each block, one

byte for the Ith address and one byte for the Jth

address.

3 . Number “3”, in the numerator and the denominator,

means that there are three basic RGB color

components.

4 . “blocklength” stands for the block length and is

given in pixels. Since the image is divided into equal-

size-square blocks, the size of each block is

“blocklength2”. Thus, the denominator stands for the

size of the original block before compression.

For the blocks of types “B”, “C”, “D”, and “F”, the

compression is done by storing pointers for the special

dictionary. However, the SRP per block is given by the

equation:

(4) 100% *
hblocklengt * 3

 b/8

hblocklengt
2 *3 2

1 F) |D |C |SRP(B
2

2
b


















++

−=

Where:

1 . “2b” stands for the number of bits required to store

the reference pointers (LUD); “b” is 1,2,4,8 for the

types “B”, “C”, “D”, “F”, respectively.

2 . The number of pixels that can be stored in a single

byte is (8 / b), which gives 8,4,2,1 for the types “B”,

“C”, “D”, “F”, respectively. So the expression

(blocklength2/ (8/b)) is used to determine the number

of bytes that are required to store the data of each

block.

3 . The rest of this equation is like equation 3.

In type “E”, the SRP per block is given by the equation:

(5) 100% *
hblocklengt * 3

hblocklengt 2
1SRP(E)

2

2








 +
−=

The major difference between the last two equations, 4 and 5,

is that the dictionary is not needed in equations 5 and

therefore is cancelled.

For the blocks of type “X”, the SRP per block is given by the

equation:

(6) 100% *
hblocklengt * 3

hblocklengt * 3 2
1 X) (SRP

2

2








 +
−=

Consequently, a summary of all types is provided in Table 3.

Table 4 illustrates these remarks and results for different

block types and lengths, “blocklength”. However, the

strikethrough bolded cells are introduced in this table, Table

4, to show the cases where the compression ratio is

inappropriate due to the fact that:

If the block is of type “X”, the actual data is saved, as it is,

in conjunction with the block address, (I, J).

Table 3: Comparison of the seven types

Type
Block

Length

Block

Address

Dictionary

Size
LUD

“A” ✓ ✓ 1*3=3 

“B”  ✓ 2*3= 6 ✓

“C”  ✓ 4*3=12 ✓

“D”  ✓ 16*3=48 ✓

“E”  ✓ Null=0 

“F”  ✓ 256*3=768 ✓

“X”  ✓ Null=0 

Fig. 10 shows the possible ranges (minimum and maximum)

of SRP for these seven types. Fig. 11 shows the evolution of

the SRP in function of the block length. However, the SRP is

improved while the size of the block is increased.

By analyzing these results, we found that the block length,

“blocklength”, affects moderately the SRP. When the block

length is increased, SRP increases, too. Moreover, in case of

type “X” blocks, this technique gives negative results.

http://www.ijeat.org/

Text-Image Segmentation and Compression using Adaptive Statistical Block Based Approach

8

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number D4873046417/17©BEIESP
Journal Website: www.ijeat.org

As a result, this technique should be dynamic enough, so that

when the decomposition using this technique is not

appropriate for a particular image, the system should be

flexible enough to cancel the operation and use another

compressor.As a final point, if the logical operation “XOR” is

applied between the encoded input image and the decoded

output image, the result is zero. Therefore, the output quality

of this phase is 100% which, in turn, leads to the conclusion

that this technique is a lossless one [2,23,25].

Table 4: Saving Rates Percentage per Block for the

different types of blocks

Block

length

Type

“A”

Type

“B”

Type

“C”

Type

“D”

Type

“E”

Type

“F”

Type

“X”

020 99.50 95.17 90.50 79.17 66.50 02.50 -0.17

030 99.78 95.54 91.15 81.48 66.59 38.15 -0.07

040 99.88 95.67 91.38 82.29 66.63 50.63 -0.04

050 99.92 95.73 91.48 82.67 66.64 56.40 -0.03

060 99.94 95.76 91.54 82.87 66.65 59.54 -0.02

070 99.96 95.78 91.57 82.99 66.65 61.43 -0.01

080 99.97 95.79 91.59 83.07 66.66 62.66 -0.01

090 99.98 95.80 91.61 83.13 66.66 63.50 -0.01

100 99.98 95.81 91.62 83.17 66.66 64.10 -0.01

110 99.98 95.81 91.63 83.20 66.66 64.55 -0.01

120 99.99 95.81 91.63 83.22 66.66 64.88 0.00

130 99.99 95.82 91.64 83.23 66.66 65.15 0.00

140 99.99 95.82 91.64 83.25 66.66 65.36 0.00

150 99.99 95.82 91.65 83.26 66.66 65.53 0.00

160 99.99 95.82 91.65 83.27 66.66 65.66 0.00

170 99.99 95.82 91.65 83.28 66.66 65.78 0.00

180 99.99 95.83 91.65 83.28 66.66 65.87 0.00

190 99.99 95.83 91.65 83.29 66.66 65.96 0.00

200 99.99 95.83 91.66 83.29 66.67 66.03 0.00

210 99.99 95.83 91.66 83.30 66.67 66.08 0.00

220 99.99 95.83 91.66 83.30 66.67 66.14 0.00

230 99.99 95.83 91.66 83.30 66.67 66.18 0.00

Figure 10: Possible SRP ranges per block type

Figure 11: Evolution of the SRP in function of the block length

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a five-phase image

segmentation and compression scheme based on the number

of colors detected in each region of the image. This proposed

technique benefit from the use of information regarding the

number of detected colors in each region of the scanned

image to be segmented. It aims to segment the original image

into consistent and homogeneous non-overlapping regions

and then, each region is compressed by using the most

off-the-shelf appropriate compression technique. This

approach combines different compression concepts in order

to achieve better compression of the scanned documents. To

test the performance of the proposed algorithm, a special

database was created and for security motivation, an integrate

encryption can be applied at the encoder side and decryption

at the decoder side; this help in creating secure data storage

for the scanned document.

ACKNOWLEDGMENT

This work is encouraged by the World Islamic Science and

Education University (WISE), Amman Jordan, and the

Northern Border University Arar, Kingdom of Saudi Arabia..

REFERENCES

1. Acharyya, M. and Kundu, M.K. (2002). “Document Image

Segmentation Using Wavelet Scale-Space Features”, IEEE

Transactions Circuits Syst. Video Technol., Volume 12, Issue 12, pp.
1117–1127.

2. Nidhal Kamel Taha El Omari. (2008). “A Hybrid Approach for
Segmentation and Compression of Compound Images”, PhD

Dissertation, the Arab Academy for Banking and Financial Sciences.

3. Nidhal Kamel Taha El-Omari and Arafat A. Awajan. (December
20-22, 2009). “Document Image Segmentation and Compression

Using Artificial Neural Network Based Technique”, International
Conference on Information and Communication Systems (ICICS09),

pp. 320-324, Amman, Jordan.

4. Kai Uwe Barthel et al., (January 2000). “New Technology for Raster
Document Image Compression”, SPIE. The International Society for

Optical Engineering, Volume 3967, pp. 286-290, San Jose, CA.
5. Patrice Y. Simard et al., (March 23-25, 2004). “A

Foreground/Background Separation Algorithm for Image

Compression”, IEEE Data Compression Conference (DCC), pp.
498–507, Snowbird, UT, USA.

6. Ricardo L. de Queiroz et al., (February 1999). “Mixed Raster Content
(MRC) Model for Compound Image Compression”, SPIE the

International Society for Optical Engineering, Volume 3653, pp.

1106-1117.

http://www.ijeat.org/

 International Journal of Engineering and Advanced Technology (IJEAT)

 ISSN: 2249-8958 (Online), Volume-6 Issue-4, April 2017

9

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number D4873046417/17©BEIESP
Journal Website: www.ijeat.org

7. Ricardo L. de Queiroz. (October 8-11, 2006). “Pre-Processing for
MRC Layers of Scanned Images”, Proceedings of the International

Conference on Image Processing (ICIP), Atlanta, Georgia, USA, pp.

3093–3096.

8. Lihong Zheng and Xiangjian He. (2004). “Edge Detection Based on

Modified BP Algorithm of ANN”, Conferences in Research and
Practice in Information Technology (RPIT), Volume 36, pp. 119–122.

9. Guotong Feng and Charles A. Bouman. (October 2006). “High Quality
MRC Document Coding”, IEEE Transactions Image Processing,

Volume 15, Issue 10, pp. 3152-3169.

10. Leon Bottou, Patrick Haffner et al., (July 1998). “High Quality
Document Image Compression with DjVu”, Journal of Electronic

Imaging, Volume 07, Issue 3, pp. 410-425.
11. Wenpeng Ding et al., (January 30, 2007). “Rate-Distortion Optimized

Color Quantization for Compound Image Compression”, Visual

Communications and Image Processing Conference, SPIE
Proceedings, Volume 6508, pp. 65082Q1-65082Q9, San Jose, CA,

USA.
12. Tony Lin and Pengwei Hao. (August 2005). “Compound Image

Compression for Real Time Computer Screen Image Transmission”,

IEEE Transactions on Image Processing, Volume 14, Issue 8, pp.
993-1005.

13. Wenpeng Ding et al., (2006). “Block-based Fast Compression for

Compound Images”, ICME, paper ID 1722, pp. 809–812.

14. Debargha Mukherjee et al., (June 2002). “JPEG2000-Matched MRC

Compression of Compound Documents”, IEEE International
Conference on Image Processing (ICIP), Volume 3, pp. 225-228.

15. Cheng H. and Bouman C. A. (April 2001). “Document Compression
Using Rate-Distortion Optimized Segmentation”, Journal of Electronic

Imaging, Volume 10, Issue 2, pp. 460–474.

16. Nidhal Kamel Taha El-Omari et al., (2012). “Innoviate Text-Image
Compression Technique”, European Journal of Scientific Research, ©

EuroJournals Publishing Inc., Volume 88, Issue 4, pp. 603-616.
17. Gnana King, G.R.1 and Seldev Christopher, C.2. (2014). “Improved

block based segmentation algorithm for compression of compound

images”, Journal of Intelligent & Fuzzy Systems, Volume 27, Issue 6,
pp. 3213-3225.

18. Qindong Sun et al., (2015). “A Method of Image Segmentation based
on the JPEG File Stream”, Journal of Computational Methods in

Sciences & Engineering, Volume 15, Issue 3, pp. 467-475.

19. Bo Chen et al., (June 2015). “A new image segmentation model with
local statistical characters based on variance minimization”, Applied

Mathematical Modelling, Volume 39, Issue 12, pp. 3227-3235.
20. Gagan Jindal and Sikander Singh Cheema, (2016), “Review Paper of

Segmentation of Natural Images using HSL Color Space Based on K-

Mean Clustering”, International Journal of Innovations &
Advancement in Computer Science, Volume 5, Issue 7, pp. 26-29.

21. Zhanjiang Zhi et al., (2016), “Two-Stage Image Segmentation Scheme
Based on Inexact Alternating Direction Method”, Numer. Math. Theor.

Meth. Appl., Volume 9, Issue 3, pp. 451-469.

22. Haifeng Sima et al., (2016), “Objectness Supervised Merging
Algorithm for Color Image Segmentation”, Mathematical Problems in

Engineering, Volume 2016, Article ID 3180357, pp. 1-11.
23. S.Thayammal, and D.Selvathi., (2013), “A Review On Segmentation

Based Image Compression Techniques”, Journal of Engineering

Science and Technology Review, Volume 6, Issue 3, pp. 134-140.
24. Ian Sommerville, (2015), “Software Engineering”, 10th Edition,

Pearson Education, Inc., ISBN-13: 978-0133943030, New York, USA.
25. Er. Kuldeep Kaur et al., (2016), “Comparative Analysis of

Compression Techniques: A Survey”, International Research Journal

of Engineering and Technology (IRJET), Volume 03, Issue: 04, pp.

1042-1046.

AUTHOR PROFILE

Nidhal Kamel Taha El-Omari He
obtained B.Sc. 2005. In 2008, he obtained

his Ph.D. in Computer Information Systems
in Image Processing from Arab Academy

for Banking and Financial Science

(AABFS), Amman-Jordan.
He joined the Information Technology

Directorate of the Jordanian Ministry of
Defense in 1986 and retired in 2009.

During 1986-1989, he worked as software

developer. During 1989-1995, he was
systems analyst and systems engineer. During 1995-2004, he was the chief

of IT instructors, head of many sections, and the project manager of many
computer projects. During 2004-2009, he chaired a number of IT-related

departments including: System Follow up Department, Technical Support

Department, and Automation Department. During 2009-2011, he was the
director of the Computer Center and the Chair of the Department of

Computer Science and Basic Science at Faculty of IT at WISE University

in Jordan. During 2009-2014, he was an assistant Professor.

 Since 2015, he is an Associate Professor and the head of Department of

Software Engineering at the Faculty of IT, WISE University. His research
interests include: Image Compression & Segmentation, Artificial Neural

Network (ANN), Artificial Bees Colony System (ABC), Wireless
Networks, and Programming Languages and Methodologies for building

correct, secure and efficient software. Dr. El-Omari authored/co-authored

two computer books and more than twenty five research papers in
international journals and conferences. nidhal.omari@wise.edu.jo;

omari_nidhal@yahoo.com;

Ahmad H. Al-Omari, received the B. Sc. In

Computer Science in 1985, M of Computer
Science in 2001, and he received his Ph.D. in

in Computer Information Systems in 2004, he
had long working experience in the field of

information technology in many working areas

like, systems analysis, programming, tendering,
network design, management and trainer. After

he joined the academic area, he was the acting

dean, dean, department head in the faculty of

Information Technology FIT, Applied Science

University. He supervised many master students, he participated in master
examination and discussion committees, and he also published more than

13 research work in his field.

Al-Ibrahim was born in Jordan on june 1th,

1966. He obtained the B.Sc. in Computer
Science in 1988 from Yarmouk University,

Irbid, Jordan. In 2008, he obtained his Ph.D. in
Computer Information Systems in Image

Processing from Arab Academy for Banking

and Financial Science (AABFS), Amman,
Jordan. He joined the Information Technology

Directorate of the Arab Potash Company in
1991 and retired in 2009. During 1991-1996,

he worked as software developer. During

1996-1999, he was systems analyst and systems engineer. During
1999-2005, he was the chief of IT Development and Technical Support unit (

head of many sections, and the project manager of many computer projects).
During 2006-2010, he was Human Resources Manager (HR Manager).

During 2014-2015 he was Chair of the Department of Computer Science and

Basic Science at Faculty of IT at WISE University in Jordan. Since 2010, he
is an Assistant Professor at the Faculty of IT in Jadara University then from

2011-2016 Assistant Professor Then 2016 – Associate Professor in WISE
University. His research interests include: Image compression &

segmentation ,Artificial Intelligence (AI), Database(DB),e- Government ,

Information Storage and Retrieval (IR), Artificial Neural Networks-Based
Decision Support System ,Strategic Information System, and programming

languages and methodologies for building correct, secure and efficient
software. Dr. Al-Ibrahim authored to computer books (1-Discrete

Mathematics for IT Students and 2-Introduction of programming languages

/ Theory of Computation) and more than fifteen research papers in
international journals and conferences. ali.alibrahim@wise.edu.jo;

ali.alibrahim66@yahoo.com;.

http://www.ijeat.org/
http://www.icme2006.org/AcceptedPapers.asp
http://www.sciencedirect.com/science/article/pii/S0307904X14006040?np=y
http://www.aabfs.org/english/
http://www.aabfs.org/english/
http://www.aabfs.org/english/
mailto:nidhal.omari@wise.edu.jo
mailto:omari_nidhal@yahoo.com
http://portal.yu.edu.jo/
http://www.aabfs.org/english/
http://www.aabfs.org/english/
mailto:ali.alibrahim@wise.edu.jo
mailto:ali.alibrahim66@yahoo.com

