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Abstract – This research paper offers a new solution to 

traditional handwriting recognition techniques using concepts of 

Deep learning and computer vision. An extension of MNIST 

digits dataset called the Emnist dataset has been used. It contains 

62 classes with 0-9 digits and A-Z characters in both uppercase 

and lowercase. An application for Android, to detect handwritten 

text and convert it into digital form using Convolutional Neural 

Networks, abbreviated as CNN, for text classification and 

detection, has been created. Prior to that we pre-processed the 

dataset and applied various filters over it. We designed an 

android application using Android Studio and linked our 

handwriting text recognition program using tensorflow libraries. 

The layout of the application has been kept simple for 

demonstration purpose. It uses a protobuf file and tensorflow 

interface to use the trained keras graph to predict alphanumeric 

characters drawn using a finger. 

Index Terms: E.G – For Example, NN – Neural Network, 

RNN – Recurrent Neural Network, CNN – Convolutional Neural 

Network, EMNIST -  Extended NIST dataset. 

I. INTRODUCTION 

A. Overview 

Handwritten Text Recognition is a technology that is 

much needed in this world as of today. Before proper 

implementation of this technology we have relied on writing 

texts with our own hands which can result in errors. It’s 

difficult to store and access physical data with efficiency. 

Manual labor is required in order to maintain proper 

organization of the data. Throughout history, there has been 

severe loss of data because of the traditional method of 

storing data. Modern day technology is letting people store 

the data over machines, where the storage, organization and 

accessing of data is relatively easier. Adopting the use of 

Handwritten Text Recognition software, it’s easier to store 
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and access data that was traditionally stored. Furthermore, it 

provides more security to the data. One such example of 

Handwritten text Recognition software is the Google Lens. 

The aim of our project is to make an application for mobile 

devices that can recognize the handwriting using concepts of 

deep learning. We approached our problem using CNN as 

they provide better accuracy over such tasks. 

B. Deep Learning 

Deep learning can be called a sub-part of Machine 

learning which is mostly used for learning data 

representations. This recently exploded technology has 

improved state of the art techniques used in natural language 

processing, object detection etc. Deep learning finds out 

complex structure in massive data sets by using the 

backpropagation algorithm to indicate how a machine 

should change its internal parameters used in each new layer 

from the representation in the previous layer. A standard 

neural network (NN) constitutes of many simple inter-

connected processors called neurons. Each neuron produces 

a sequence of activations. The activation of  

input neurons takes place through sensors that perceive 

the environment whereas the others get activated through 

weighted connections from previously active neurons. 

C. Convolutional Neural Networks 

CNN image classifications take an input image, process it 

and classify it under certain categories (E.g., Dog, Cat, 

Tiger, Lion). Computers sees an input image as array of 

pixels. Based on the image resolution, it will see h x w x d(h 

= Height, w = Width, d = Dimension ). E.g., An image of 6 

x 6 x 3 array of matrix of RGB (3 refers to RGB values) and 

an image of 4 x 4 x 1 array of matrix of grayscale image 

where 3 and 1 are the number of color values required to 

represent an image pixel. 

i. Convolution – The main building block of CNN is the 

convolutional layer which is a mathematical operation 

to merge two sets of information. The convolution is 

applied on the input data using a convolution filter to 

produce a feature map. The first layer to extract 

features from an input image is convolution. 

ii. Striding – The number of shifts over the input image is 

called stride. Example- When stride is 1 then we move 

the filters to 1 pixel at a time. 

iii. Non-Linearity – ReLU stands for Rectified Linear 

Unit for a non-linear operation. The output is: 

{F(x) = max(0,x)} 
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iv. Pooling Layer – After a convolution operation we 

usually perform pooling to reduce the dimensionality. 

This enables us to reduce the number of parameters, 

which in turn shortens the training time and reduces 

chances of overfitting. 

 

 

 

Pooling layers downsample each feature map 

independently, reducing the height and width, keeping 

the depth intact. The most common type of pooling is 

max pooling which just takes the maximum value in 

the pooling space. Contrary to the convolution 

operation, pooling has no parameters. It slides a 

window over its input, and simply takes the maximum 

value in the window. The largest element from the 

feature map is selected by using this operation. 

 
 

 

II. LITERATURE SURVEY 

A. Prior Works 

We have used the dataset of EMNIST [1], there have been 

several accomplishments that has been achieved using this 

dataset. Even before using Deep learning, Handwritten text 

recognition has been made possible, however their 

accuracies were really low or they had a relatively small 

dataset as said by Line Eikvil [2]. In this paper, usage of 

OCR has been discussed such as in Speech Recognition, 

Radio Frequency, Vision systems, Magnetic Stripes, Bar 

Code and Optical Mark Reading. A popular machine 

learning task is classifying the MNIST dataset, which is 

dataset of numbers. Best Practices for Convolutional Neural 

Networks Applied to Visual Document Analysis by Simard, 

Steinkraus and Platt is a valuable paper for understanding 

usage of convoluted neural networks (CNNs). For word 

recognition, a Paper by Pham et al., used a 2-layer CNN 

which fed into a bidirectional recurrent neural networks 

(RNN) with Long Short-Term Memory (LSTM) cells [3]. 

The best model implemented, according to us, is by Graves 

and Schmiduber with a multidimensional RNN structure. [4] 

Another paper on ’Handwritten Text Recognition’ by M.J. 

Castro-Bleda dealt with dataset with slanted words as well 

and corrected them during pre-processing. [5] Development 

of English Handwritten Recognition Using Deep Neural 

Network by Teddy Surya and Ahmad Fakhrur uses a Deep 

Neural Network model having two Encoding layer and one 

SoftMax layer on the EMNIST dataset. Their accuracy using 

DNN was way better than the earlier proposed patternnet 

and feedforwardnet ANN (Artificial Neural Networks). [6] 

Handwritten text recognition can also be achieved on basis 

of Relaxation Convolutional Neural Networks(R-CNN) and 

alternatively trained relaxation convolutional neural 

networks (ATRCNN) as done by ChunPeng Wu and Wei 

Fan. [7] Our model achieved accuracy over 87 percent using 

Convolutional Neural Networks from Keras[8] library. 

B. Dataset Description 

The EMNIST dataset is a collection of handwritten 

alphanumeric derived from the NIST Special Database 19. 

Each image is converted to a 28x28 format and dataset 

structure that directly matches the dataset is used. The 

training set has 697932 images and test set has 116323 of 

uppercase and lowercase alphabets and numerals from 0-9 

which are mapped to their corresponding classes. The test 

set and training set is available in the form of list within list. 

Each item of outer list represents an image and inner list 

represents the intensity values of 784 pixels (because size of 

image is 28 x 28 pixels) ranging from 0-255. The test 

images as well as train images have a white foreground and 

black background. Both the test images as well as train 

images are horizontally flipped and rotated 90 degrees 

clockwise. Y train and Y test both are arrays which contain 

number ranging from 0 to 61 as there are 10 numerals from 

0-9 and 26 uppercase and lowercase alphabets each which 

adds up to 62. [1] 

 

III. METHODOLOGY  

The aim of our project is to make an interface that can be 

used to recognize user handwritten characters. We 

approached our problem using Convolutional neural 

Networks in order to get a higher accuracy. Several 

researches have been undertaken to improve the accuracy of 

alphanumeric character prediction. Our research will include 

that to some extent. But our main focus will be providing a 

GUI that can be used to easily predict characters for further 

use. We plan to do so using tensorflow [9] and keras. 

Firstly, we will define a model that will be trained with the 

Emnist dataset which contains over 690,000 train images 

and will be validated using the test dataset provided by 

Emnist again.  

 

 

http://www.ijeat.org/


  International Journal of Engineering and Advanced Technology (IJEAT) 

  ISSN: 2249-8958 (Online), Volume-8 Issue-2S2, January 2019 

174 

Published By: 
Blue Eyes Intelligence Engineering  

and Sciences Publication (BEIESP)  

© Copyright: All rights reserved. 

Retrieval Number B10370182S219/19©BEIESP 
Journal Website: www.ijeat.org 

We will then freeze the keras graph and link it to our 

android application which has a simple layout that takes a 

user hand drawn input and will predict the alphanumeric 

character. Later, we will work on python to segment 

characters from an image of a word and predict each 

character using our model. 

A. Data Pre-Processing 

Prior to training our sequential model with our train 

images, we were required to apply some pre-processing 

techniques to our data in order to make it more fitting for 

our model and for our app (Our android app provides a 1-D 

array as an input). 

i. Normalization - In image processing, changing the range 

of pixel intensity values is known as normalization. 

Some of its applications include correcting photographs 

with poor contrast due to glare, for example. 

Normalization is sometimes called contrast stretching or 

histogram stretching. Here we use the range of float 

values between 0 and 1. 

ii. Rotating and Reversing the data –  

 
As mentioned in the Introduction of the report, the 

Emnist dataset contains 697932 train images and 116323 

test images, all rotated and reversed. In this section, we 

reverse the images and later rotate them 90 

anticlockwise. We achieve both these operations using 

an inbuilt NumPy transpose function. 

iii. Input image filtering – Here, we discuss various pre-

processing techniques that we have applied as to get an 

efficient classification. Firstly, we resize and image in 

the ratio 4:5(using inbuilt python libraries) and convert it 

into grayscale. This helps in increasing spaces between 

the written characters so that we can identify characters 

that were written extremely close to each other. Next, we 

perform thresholding on the image. This way, we 

partition an image into a foreground and background. 

After this the image is converted to binary format 

because contours can be found easily in binary images. 

For this we use the threshold function of cv2. We then 

dilate the image. This expands its interior objects and 

increases chances of an efficient character segmentation. 

Further, we apply a gaussian blur to our image. This 

results in each pixel in our image being multiplied with a 

gaussian kernel. This reduces noise and detail. Now our 

image is ready for segmentation. 

B. Model 

The CNN model for recognizing handwritten characters is 

constructed using the KERAS library of python and 

tensorflow [9] backend. Keras is a high-level neural 

networks API, written in Python and capable of running on 

top of TensorFlow [9], CNTK, or Theano as backend. The 

most widely used type of model is SEQUENTIAL. The 

sequential model consists of linear stack of layers. The same 

has been used for developing the handwritten text 

recognition model. Defining a model was our primary task. 

Defining a model basically means adding different layers to 

the stack. Layer 1: The first layer we added is the reshape 

layer that took an input of (784,1) and reshaped it into 

(28,28,1). Layer 2 and Layer 3: Convolutional layer - The 

function of convolutional layer is to find out distinctive 

 

 
Figure 3.2 Model Visualization 

 

features from the given input matrix which is an image of 

handwritten text which has been already normalized. The 

convolutional layer uses a filter matrix which is a 

combination of zeros and ones. The filter matrix slides over 

the input matrix and keeps the count of elements which 

matched with the elements of the filter matrix. The matrix so 

created is called FEATURE MAP. This convolutional layer 

takes input matrix of shape of (28,28,1). This layer uses a 

filter of size (5,5) and a stride size of 1. It creates 32 feature 

maps as output using 32 different filters. It uses ReLU as the 

activation function. ReLU is preferred over SIGMOID 

because sigmoid is a slow learning function.  
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The purpose of using the convolution layer twice is to 

extract more features to improve the model’s accuracy. 

Layer 4: MAX POOLING layer. Maxpooling is done by 

applying a max filter to (usually) non-overlapping sub 

regions of the initial representation. When the images are 

too large, we would need to reduce the number of trainable 

parameters. Pooling is done for the sole purpose of reducing 

the spatial size of the image. Here we have used a pool size 

of (2,2) with stride size 2. Layer 5: FLATTEN layer. The 

function of the flatten layer is convert all elements of the 

feature maps matrices to individual neurons which will 

serve as input to the next layer. Layer 6: DENSE layer or the 

input layer which accepts the output from the FLATTEN 

layer as input. The value held by a neuron is called 

activation of that neuron. Every unit of input(neuron) has 

activation corresponding to intensity of pixel. The output of 

this layer is determined using the activation function which 

is ReLU (Rectified Linear Unit) in this case. The function of 

activation function is to activate the neurons of the DENSE 

layer. This layer has 512 neurons. Every neuron has a bias 

associated with it. More over every neuron has weights 

corresponding to each and every input. This can be 

visualized with the help of picture illustrated above. In the 

picture above each neuron of hidden layer has 1 bias and 3 

weights associated with it corresponding to each input 

neuron. The neurons are activated based on the outcome 

from the activation function, if its activation is greater than 

0.5 the neuron is activated else the neuron remains inactive.  

 

Layer 7: is the dropout layer. The function of the dropout 

layer is to remove some of the neurons or the unwanted 

features that can make the model bulky and increase the 

training time. It is also helping in avoiding overfitting. Here 

we have a used a dropout layer which removes 50 percent of 

neurons. Layer 8: The last layer of the model is the dense 

layer which is also called the output layer. The last layer has 

62 neurons corresponding to 0-9 numbers and A-Z alphabets 

in uppercase as well as lower case. The neurons are 

activated in the similar fashion, but this time SOFTMAX is 

used as the activation function. SOFTMAX is a logistic 

classification function which is similar to the SIGMOID 

function. Like SIGMOID function it also used to calculate 

probabilities of different classes. The only difference is 

SOFTMAX is used for multiclass classification whereas 

SIGMOID is used for binary classification. The equation for 

the SoftMax function is given below. 

 

{ 𝜎(𝑧){𝑗} =
{𝑒{𝑧{𝑗}}}

{∑ 𝑒{𝑧{𝑘}}{𝑘}
{𝐾=1} }

𝑓𝑜𝑟 𝑗 = 1, … , 𝑘} 

 

SOFTMAX will calculate the probabilities of each target 

class over all possible target classes. The target class can be 

later easily identified using the calculated probabilities for 

the inputs. SOFTMAX provides us with a range of 0 to 1 

with the sum of all probabilities equal to 1. The class with 

the highest probability is the target class. The block diagram 

of the model is illustrated as following: 

IV. RESULTS 

A. Training 
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We trained our models with different optimizers available 

for keras [8]. As the bar chart illustrates, the models we used 

included RmsProp, Adam, Adadelta, Adamax, SGD. The 

highest accuracy obtained was when we used Adamax for 

our experiment. So, we decided to use it for the purpose of 

our research on the Emnist dataset. Other optimizers gave 

accuracies somewhat very close to Adamax, but Adamax 

substantially reduced our training time as well. The training 

on a personal computer (RAM - 16 GB) took about 20 hours 

with 512 units in our dense layer. This training time can be 

reduced in a manifold way by adopting the usage of GPU. 

The model trained with our Emnist dataset which had been 

pre-processed and optimized for training beforehand. We 

have categorically distributed the train and test labels and 

flattened out train and test arrays for easy input into our 

model and android application. The Adamax optimizer is 

extremely popular for training large models and has 

provided us with robust results. We tried out different 

hyperparameters for our keras model:  

 
 

 
We then stuck with a model with 2 Convolution layers as 

it gave us the highest accuracy. Model accuracy increased 

with each epoch. At first, it increased exponentially, and 

later had a minute and steady growth. At the end of our 

training, we obtained 89.53 percent accuracy which is a little 

shy of the maximum accuracy obtained using the Emnist 

dataset. 

The evaluation of the model was done with the test data 

Emnist provided. Our model was able to predict with an 

accuracy of 87.1 percent. This accuracy can be increased 

further in future research work by pre-processing the dataset 

even more and by adding new hyperparameters to the keras 

model. The lower the loss, the better the model (unless the 

model has overfitted to the training data). We have 

calculated loss on our train and test data. In case of neural 

networks, the loss is usually negative log-likelihood and the 

residual sum of squares for classification and regression 

respectively. Then naturally, our objective was to reduce the 

loss functions value with respect to the model’s parameters. 

The loss with our keras [8] model during training began at 

0.68 with the first epoch and ended up at 0.31. As the model 

chapter previously stated, our classifier contained two 

Convolution and a single Maxpooling layer with a dropout 

layer and a dense layer with 512 units. We tried tweaking 

this by adding a few more back to back convolution layers 

but this didn’t work well for our model and resulted in a 

lower accuracy. 

B. Character Segmentation and Prediction 

We begin by inputting an image. The image can be of a 

single character or a word. We use OpenCV to work with 

images for this research. Using inbuilt OpenCV library 

functions, we find contours in the image. After finding 

contours, we create rectangular bounding boxes around each 

character in a copied image. This is done because if we 

create boxes in the original image, the boxes may overlap 

with each other and hinder the performance of the classifier. 

Contours can be defined in a simple manner as a curve 

joining all the continuous points (along the boundary), 

having same color or intensity. They prove to be a useful 

tool for shape analysis and object detection. For better 

accuracy, we use binary images. findContours() function 

modifies the source image that’s the reason we send a copy 

of image. 
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 After we create boxes around each identified character, 

we extract ROI’s(Region of Interest) from the image. Since 

the size of each character might be different, we resize each 

image into a 28*28 image using OpenCV again so that this 

image can be used as an input to our model classifier. For 

instance, size of ’J’ might be bigger than that of ’N’ in 

’JABULANI’ as shown in Figure 4.4. An Example of Pre-

processing and segmentation is illustrated below. Once 

segmentation is completed, we provide each 28*28 ROI as 

an input to our model and use the converted result to display 

the outcome in a formatted manner as illustrated in the last 

figure. 

 
 

 

 

 

 

 

C. Android application 

The android application developed for the purpose of easy 

hands on usage of this project was built with SDKtools 

27.0.1 and gradle version 4.4. The android application has a 

simple layout with a drawview, two buttons and a textview 

and is inspired by the project uploaded by Sourcell: Link - 

https://github.com/llSourcell/A_Guide_to_Running_Tensorf

low_ Models_on_Android. The drawview is a separate class 

entity that handles user input. A user can draw on the white 

canvas. Finger touch movements are used to identify the 

positions where a black pixel is supposed to be drawn. One 

button clears the drawview, another predicts the character 

drawn on the drawview. The android application was linked 

with our machine learning project created on python using 

tensorflow. TensorFlow libraries were added to the libs 

folder and the necessary changes were made in the gradle to 

import tensorflow[9] classes into our android studio project. 

After training our model in python, we had frozen its graph 

into a Protobuf file to be used for android import. We have 

added this Protobuf file as an asset. Now let’s discuss how 

the application works. Once the user draws a figure on the 

drawview, we convert this figure to a bitmap using Bitmap 

class in java. A float array of size 784 is declared and all the 

bitmap pixel values are stored in that array. Each of the 784-

pixel values is normalized by division to bring it between 

the range of 0 and 1, that is the values used to train our 

model. Then, the Tensorflowinterface node is filled with the 

float array. We then call the Protobuf file located in our 

asset folder and provide the array to the input node. The 

interface returns us a result array with the probability of the 

bitmap being each of the 62 characters via the output node. 

We store this result in a new array of size 62. Now, we 

display the character with the highest probability using the 

textview. 

The android application can be found online for further 

research work and for the purpose of its improvement at: 

https://drive.google.com/open?id=1JTgc4ZM0n3UVixXa-

HpBoU2mjlhlQ5oV 

 

 

 

 

 

http://www.ijeat.org/
https://drive.google.com/open?id=1JTgc4ZM0n3UVixXa-HpBoU2mjlhlQ5oV
https://drive.google.com/open?id=1JTgc4ZM0n3UVixXa-HpBoU2mjlhlQ5oV


  International Journal of Engineering and Advanced Technology (IJEAT) 

  ISSN: 2249-8958 (Online), Volume-8 Issue-2S2, January 2019 

178 

Published By: 
Blue Eyes Intelligence Engineering  

and Sciences Publication (BEIESP)  

© Copyright: All rights reserved. 

Retrieval Number B10370182S219/19©BEIESP 
Journal Website: www.ijeat.org 

V. CONCLUSION 

Using modern day techniques like neural networks to 

implement deep learning to solve basic tasks which are done 

with a blink of an eye by any human like text recognition is 

just scratching the surface of the potential behind machine 

learning. There are infinite possibilities and application of 

this technology. Traditional OCR used to work similar to 

biometric device. Photo sensor technology was used to 

gather the match points of physical attributes and then 

convert it into database of known types. But with the help of 

modern-day techniques like convolution neural networks we 

are able to scan and understand words with an accuracy 

never seen before in history. We used the EMNIST data set 

to train our model and tested different optimizers to finally 

select Adamax as it not only yielded a high accuracy with 

each epoch on our train data but also our test data. A further 

application of accurate text OCRs is to help the partially 

sighted and the blind in the absence of braille. By also 

integrating a simple text to speech module in the app the 

user can point his phone to any text which will then read out 

the text for the user. A dedicated device can also be built for 

this purpose with a more sophisticated image recognition 

system which can identify objects to tell the user how many 

steps to walk in which direction and even when to stop and 

turn. The EMNIST datasets, a suite of six datasets, 

considerably increased the challenge faced by employing 

only the MNIST dataset. Even though the structure of 

EMNIST dataset is similar to that of MNIST, it provides a 

higher number of image samples and output classes and an 

even more complex and varied classification task. It was 

thus obvious to use it as the backbone of our project. 

Without the use of EMNIST data set it would be practically 

impossible to achieve this accuracy. Our current android app 

requires the user to draw/ write the text on the screen and 

then analyses it to identify the alphanumeric character. The 

app can be developed further to import images from the 

gallery in the user’s device and identify the text in present in 

those images. Another development can be to convert text to 

speech to further increase the applications of the mobile app.  

The android app can be developed further using googles 

cloud natural language API which provides natural language 

understanding technologies like, sentiment analysis, entity 

recognition, entity sentiment analysis, and text annotations 

to understand the text further and better by providing 

dictionaries that will rectify the mistakes made by the model 

to provide a meaningful result. Another development can be 

the use of googles cloud vision API to increase the accuracy 

of the data read and even to identify different objects. [1] 
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