
 International Journal of Engineering and Advanced Technology (IJEAT)

 ISSN: 2249-8958 (Online), Volume-8 Issue-2S2, January 2019

172

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number B10370182S219/19©BEIESP
Journal Website: www.ijeat.org

Abstract – This research paper offers a new solution to

traditional handwriting recognition techniques using concepts of

Deep learning and computer vision. An extension of MNIST

digits dataset called the Emnist dataset has been used. It contains

62 classes with 0-9 digits and A-Z characters in both uppercase

and lowercase. An application for Android, to detect handwritten

text and convert it into digital form using Convolutional Neural

Networks, abbreviated as CNN, for text classification and

detection, has been created. Prior to that we pre-processed the

dataset and applied various filters over it. We designed an

android application using Android Studio and linked our

handwriting text recognition program using tensorflow libraries.

The layout of the application has been kept simple for

demonstration purpose. It uses a protobuf file and tensorflow

interface to use the trained keras graph to predict alphanumeric

characters drawn using a finger.

Index Terms: E.G – For Example, NN – Neural Network,

RNN – Recurrent Neural Network, CNN – Convolutional Neural

Network, EMNIST - Extended NIST dataset.

I. INTRODUCTION

A. Overview

Handwritten Text Recognition is a technology that is

much needed in this world as of today. Before proper

implementation of this technology we have relied on writing

texts with our own hands which can result in errors. It’s

difficult to store and access physical data with efficiency.

Manual labor is required in order to maintain proper

organization of the data. Throughout history, there has been

severe loss of data because of the traditional method of

storing data. Modern day technology is letting people store

the data over machines, where the storage, organization and

accessing of data is relatively easier. Adopting the use of

Handwritten Text Recognition software, it’s easier to store

Manuscript published on 30 January 2019.
* Correspondence Author (s)

Shubham Sanjay Mor, Department of Computer Science and
Engineering, Manipal University, Jaipur, Rajasthan, India.

(E-Mail: shubhammor@outlook.com)

Shivam Solanki, Department of Computer Science and Engineering,
Manipal University Jaipur, Rajasthan, India.(E-Mail: 98shim@gmail.com)

Saransh Gupta, Department of Computer Science and Engineering,

Manipal University, Jaipur, Rajasthan, India.
(E-Mail: saranshgupta121@gmail.com)

Sayam Dhingra, Department of Computer Science and Engineering,

Manipal University Jaipur, Rajasthan, India.
(E-Mail: sayam.dhingra26@gmail.com)

Monika Jain, Department of Information Technology, Manipal

University, Jaipur, Rajasthan, India.(E-Mail: monikalnct@gmail.com)
Rahul Saxena, Department of Information Technology, Manipal

University, Jaipur, Rajasthan, India.
(E-Mail: rahulsaxena0812@gmail.com)

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the

CC-BY-NC-ND license https://creativecommons.org/licenses/by-nc-nd/4.0/

and access data that was traditionally stored. Furthermore, it

provides more security to the data. One such example of

Handwritten text Recognition software is the Google Lens.

The aim of our project is to make an application for mobile

devices that can recognize the handwriting using concepts of

deep learning. We approached our problem using CNN as

they provide better accuracy over such tasks.

B. Deep Learning

Deep learning can be called a sub-part of Machine

learning which is mostly used for learning data

representations. This recently exploded technology has

improved state of the art techniques used in natural language

processing, object detection etc. Deep learning finds out

complex structure in massive data sets by using the

backpropagation algorithm to indicate how a machine

should change its internal parameters used in each new layer

from the representation in the previous layer. A standard

neural network (NN) constitutes of many simple inter-

connected processors called neurons. Each neuron produces

a sequence of activations. The activation of

input neurons takes place through sensors that perceive

the environment whereas the others get activated through

weighted connections from previously active neurons.

C. Convolutional Neural Networks

CNN image classifications take an input image, process it

and classify it under certain categories (E.g., Dog, Cat,

Tiger, Lion). Computers sees an input image as array of

pixels. Based on the image resolution, it will see h x w x d(h

= Height, w = Width, d = Dimension). E.g., An image of 6

x 6 x 3 array of matrix of RGB (3 refers to RGB values) and

an image of 4 x 4 x 1 array of matrix of grayscale image

where 3 and 1 are the number of color values required to

represent an image pixel.

i. Convolution – The main building block of CNN is the

convolutional layer which is a mathematical operation

to merge two sets of information. The convolution is

applied on the input data using a convolution filter to

produce a feature map. The first layer to extract

features from an input image is convolution.

ii. Striding – The number of shifts over the input image is

called stride. Example- When stride is 1 then we move

the filters to 1 pixel at a time.

iii. Non-Linearity – ReLU stands for Rectified Linear

Unit for a non-linear operation. The output is:

{F(x) = max(0,x)}

Handwritten Text Recognition: With Deep

Learning and Android

Shubham Sanjay Mor, Shivam Solanki, Saransh Gupta, Sayam Dhingra, Monika Jain, Rahul Saxena

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/
mailto:rahulsaxena0812@gmail.com
https://www.openaccess.nl/en/open-publications
https://creativecommons.org/licenses/by-nc-nd/4.0/

Handwritten Text Recognition: With Deep Learning and Android

173

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number B10370182S219/19©BEIESP
Journal Website: www.ijeat.org

iv. Pooling Layer – After a convolution operation we

usually perform pooling to reduce the dimensionality.

This enables us to reduce the number of parameters,

which in turn shortens the training time and reduces

chances of overfitting.

Pooling layers downsample each feature map

independently, reducing the height and width, keeping

the depth intact. The most common type of pooling is

max pooling which just takes the maximum value in

the pooling space. Contrary to the convolution

operation, pooling has no parameters. It slides a

window over its input, and simply takes the maximum

value in the window. The largest element from the

feature map is selected by using this operation.

II. LITERATURE SURVEY

A. Prior Works

We have used the dataset of EMNIST [1], there have been

several accomplishments that has been achieved using this

dataset. Even before using Deep learning, Handwritten text

recognition has been made possible, however their

accuracies were really low or they had a relatively small

dataset as said by Line Eikvil [2]. In this paper, usage of

OCR has been discussed such as in Speech Recognition,

Radio Frequency, Vision systems, Magnetic Stripes, Bar

Code and Optical Mark Reading. A popular machine

learning task is classifying the MNIST dataset, which is

dataset of numbers. Best Practices for Convolutional Neural

Networks Applied to Visual Document Analysis by Simard,

Steinkraus and Platt is a valuable paper for understanding

usage of convoluted neural networks (CNNs). For word

recognition, a Paper by Pham et al., used a 2-layer CNN

which fed into a bidirectional recurrent neural networks

(RNN) with Long Short-Term Memory (LSTM) cells [3].

The best model implemented, according to us, is by Graves

and Schmiduber with a multidimensional RNN structure. [4]

Another paper on ’Handwritten Text Recognition’ by M.J.

Castro-Bleda dealt with dataset with slanted words as well

and corrected them during pre-processing. [5] Development

of English Handwritten Recognition Using Deep Neural

Network by Teddy Surya and Ahmad Fakhrur uses a Deep

Neural Network model having two Encoding layer and one

SoftMax layer on the EMNIST dataset. Their accuracy using

DNN was way better than the earlier proposed patternnet

and feedforwardnet ANN (Artificial Neural Networks). [6]

Handwritten text recognition can also be achieved on basis

of Relaxation Convolutional Neural Networks(R-CNN) and

alternatively trained relaxation convolutional neural

networks (ATRCNN) as done by ChunPeng Wu and Wei

Fan. [7] Our model achieved accuracy over 87 percent using

Convolutional Neural Networks from Keras[8] library.

B. Dataset Description

The EMNIST dataset is a collection of handwritten

alphanumeric derived from the NIST Special Database 19.

Each image is converted to a 28x28 format and dataset

structure that directly matches the dataset is used. The

training set has 697932 images and test set has 116323 of

uppercase and lowercase alphabets and numerals from 0-9

which are mapped to their corresponding classes. The test

set and training set is available in the form of list within list.

Each item of outer list represents an image and inner list

represents the intensity values of 784 pixels (because size of

image is 28 x 28 pixels) ranging from 0-255. The test

images as well as train images have a white foreground and

black background. Both the test images as well as train

images are horizontally flipped and rotated 90 degrees

clockwise. Y train and Y test both are arrays which contain

number ranging from 0 to 61 as there are 10 numerals from

0-9 and 26 uppercase and lowercase alphabets each which

adds up to 62. [1]

III. METHODOLOGY

The aim of our project is to make an interface that can be

used to recognize user handwritten characters. We

approached our problem using Convolutional neural

Networks in order to get a higher accuracy. Several

researches have been undertaken to improve the accuracy of

alphanumeric character prediction. Our research will include

that to some extent. But our main focus will be providing a

GUI that can be used to easily predict characters for further

use. We plan to do so using tensorflow [9] and keras.

Firstly, we will define a model that will be trained with the

Emnist dataset which contains over 690,000 train images

and will be validated using the test dataset provided by

Emnist again.

http://www.ijeat.org/

 International Journal of Engineering and Advanced Technology (IJEAT)

 ISSN: 2249-8958 (Online), Volume-8 Issue-2S2, January 2019

174

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number B10370182S219/19©BEIESP
Journal Website: www.ijeat.org

We will then freeze the keras graph and link it to our

android application which has a simple layout that takes a

user hand drawn input and will predict the alphanumeric

character. Later, we will work on python to segment

characters from an image of a word and predict each

character using our model.

A. Data Pre-Processing

Prior to training our sequential model with our train

images, we were required to apply some pre-processing

techniques to our data in order to make it more fitting for

our model and for our app (Our android app provides a 1-D

array as an input).

i. Normalization - In image processing, changing the range

of pixel intensity values is known as normalization.

Some of its applications include correcting photographs

with poor contrast due to glare, for example.

Normalization is sometimes called contrast stretching or

histogram stretching. Here we use the range of float

values between 0 and 1.

ii. Rotating and Reversing the data –

As mentioned in the Introduction of the report, the

Emnist dataset contains 697932 train images and 116323

test images, all rotated and reversed. In this section, we

reverse the images and later rotate them 90

anticlockwise. We achieve both these operations using

an inbuilt NumPy transpose function.

iii. Input image filtering – Here, we discuss various pre-

processing techniques that we have applied as to get an

efficient classification. Firstly, we resize and image in

the ratio 4:5(using inbuilt python libraries) and convert it

into grayscale. This helps in increasing spaces between

the written characters so that we can identify characters

that were written extremely close to each other. Next, we

perform thresholding on the image. This way, we

partition an image into a foreground and background.

After this the image is converted to binary format

because contours can be found easily in binary images.

For this we use the threshold function of cv2. We then

dilate the image. This expands its interior objects and

increases chances of an efficient character segmentation.

Further, we apply a gaussian blur to our image. This

results in each pixel in our image being multiplied with a

gaussian kernel. This reduces noise and detail. Now our

image is ready for segmentation.

B. Model

The CNN model for recognizing handwritten characters is

constructed using the KERAS library of python and

tensorflow [9] backend. Keras is a high-level neural

networks API, written in Python and capable of running on

top of TensorFlow [9], CNTK, or Theano as backend. The

most widely used type of model is SEQUENTIAL. The

sequential model consists of linear stack of layers. The same

has been used for developing the handwritten text

recognition model. Defining a model was our primary task.

Defining a model basically means adding different layers to

the stack. Layer 1: The first layer we added is the reshape

layer that took an input of (784,1) and reshaped it into

(28,28,1). Layer 2 and Layer 3: Convolutional layer - The

function of convolutional layer is to find out distinctive

Figure 3.2 Model Visualization

features from the given input matrix which is an image of

handwritten text which has been already normalized. The

convolutional layer uses a filter matrix which is a

combination of zeros and ones. The filter matrix slides over

the input matrix and keeps the count of elements which

matched with the elements of the filter matrix. The matrix so

created is called FEATURE MAP. This convolutional layer

takes input matrix of shape of (28,28,1). This layer uses a

filter of size (5,5) and a stride size of 1. It creates 32 feature

maps as output using 32 different filters. It uses ReLU as the

activation function. ReLU is preferred over SIGMOID

because sigmoid is a slow learning function.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Handwritten Text Recognition: With Deep Learning and Android

175

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number B10370182S219/19©BEIESP
Journal Website: www.ijeat.org

The purpose of using the convolution layer twice is to

extract more features to improve the model’s accuracy.

Layer 4: MAX POOLING layer. Maxpooling is done by

applying a max filter to (usually) non-overlapping sub

regions of the initial representation. When the images are

too large, we would need to reduce the number of trainable

parameters. Pooling is done for the sole purpose of reducing

the spatial size of the image. Here we have used a pool size

of (2,2) with stride size 2. Layer 5: FLATTEN layer. The

function of the flatten layer is convert all elements of the

feature maps matrices to individual neurons which will

serve as input to the next layer. Layer 6: DENSE layer or the

input layer which accepts the output from the FLATTEN

layer as input. The value held by a neuron is called

activation of that neuron. Every unit of input(neuron) has

activation corresponding to intensity of pixel. The output of

this layer is determined using the activation function which

is ReLU (Rectified Linear Unit) in this case. The function of

activation function is to activate the neurons of the DENSE

layer. This layer has 512 neurons. Every neuron has a bias

associated with it. More over every neuron has weights

corresponding to each and every input. This can be

visualized with the help of picture illustrated above. In the

picture above each neuron of hidden layer has 1 bias and 3

weights associated with it corresponding to each input

neuron. The neurons are activated based on the outcome

from the activation function, if its activation is greater than

0.5 the neuron is activated else the neuron remains inactive.

Layer 7: is the dropout layer. The function of the dropout

layer is to remove some of the neurons or the unwanted

features that can make the model bulky and increase the

training time. It is also helping in avoiding overfitting. Here

we have a used a dropout layer which removes 50 percent of

neurons. Layer 8: The last layer of the model is the dense

layer which is also called the output layer. The last layer has

62 neurons corresponding to 0-9 numbers and A-Z alphabets

in uppercase as well as lower case. The neurons are

activated in the similar fashion, but this time SOFTMAX is

used as the activation function. SOFTMAX is a logistic

classification function which is similar to the SIGMOID

function. Like SIGMOID function it also used to calculate

probabilities of different classes. The only difference is

SOFTMAX is used for multiclass classification whereas

SIGMOID is used for binary classification. The equation for

the SoftMax function is given below.

{ 𝜎(𝑧){𝑗} =
{𝑒{𝑧{𝑗}}}

{∑ 𝑒{𝑧{𝑘}}{𝑘}
{𝐾=1} }

𝑓𝑜𝑟 𝑗 = 1, … , 𝑘}

SOFTMAX will calculate the probabilities of each target

class over all possible target classes. The target class can be

later easily identified using the calculated probabilities for

the inputs. SOFTMAX provides us with a range of 0 to 1

with the sum of all probabilities equal to 1. The class with

the highest probability is the target class. The block diagram

of the model is illustrated as following:

IV. RESULTS

A. Training

http://www.ijeat.org/

 International Journal of Engineering and Advanced Technology (IJEAT)

 ISSN: 2249-8958 (Online), Volume-8 Issue-2S2, January 2019

176

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number B10370182S219/19©BEIESP
Journal Website: www.ijeat.org

We trained our models with different optimizers available

for keras [8]. As the bar chart illustrates, the models we used

included RmsProp, Adam, Adadelta, Adamax, SGD. The

highest accuracy obtained was when we used Adamax for

our experiment. So, we decided to use it for the purpose of

our research on the Emnist dataset. Other optimizers gave

accuracies somewhat very close to Adamax, but Adamax

substantially reduced our training time as well. The training

on a personal computer (RAM - 16 GB) took about 20 hours

with 512 units in our dense layer. This training time can be

reduced in a manifold way by adopting the usage of GPU.

The model trained with our Emnist dataset which had been

pre-processed and optimized for training beforehand. We

have categorically distributed the train and test labels and

flattened out train and test arrays for easy input into our

model and android application. The Adamax optimizer is

extremely popular for training large models and has

provided us with robust results. We tried out different

hyperparameters for our keras model:

We then stuck with a model with 2 Convolution layers as

it gave us the highest accuracy. Model accuracy increased

with each epoch. At first, it increased exponentially, and

later had a minute and steady growth. At the end of our

training, we obtained 89.53 percent accuracy which is a little

shy of the maximum accuracy obtained using the Emnist

dataset.

The evaluation of the model was done with the test data

Emnist provided. Our model was able to predict with an

accuracy of 87.1 percent. This accuracy can be increased

further in future research work by pre-processing the dataset

even more and by adding new hyperparameters to the keras

model. The lower the loss, the better the model (unless the

model has overfitted to the training data). We have

calculated loss on our train and test data. In case of neural

networks, the loss is usually negative log-likelihood and the

residual sum of squares for classification and regression

respectively. Then naturally, our objective was to reduce the

loss functions value with respect to the model’s parameters.

The loss with our keras [8] model during training began at

0.68 with the first epoch and ended up at 0.31. As the model

chapter previously stated, our classifier contained two

Convolution and a single Maxpooling layer with a dropout

layer and a dense layer with 512 units. We tried tweaking

this by adding a few more back to back convolution layers

but this didn’t work well for our model and resulted in a

lower accuracy.

B. Character Segmentation and Prediction

We begin by inputting an image. The image can be of a

single character or a word. We use OpenCV to work with

images for this research. Using inbuilt OpenCV library

functions, we find contours in the image. After finding

contours, we create rectangular bounding boxes around each

character in a copied image. This is done because if we

create boxes in the original image, the boxes may overlap

with each other and hinder the performance of the classifier.

Contours can be defined in a simple manner as a curve

joining all the continuous points (along the boundary),

having same color or intensity. They prove to be a useful

tool for shape analysis and object detection. For better

accuracy, we use binary images. findContours() function

modifies the source image that’s the reason we send a copy

of image.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Handwritten Text Recognition: With Deep Learning and Android

177

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number B10370182S219/19©BEIESP
Journal Website: www.ijeat.org

 After we create boxes around each identified character,

we extract ROI’s(Region of Interest) from the image. Since

the size of each character might be different, we resize each

image into a 28*28 image using OpenCV again so that this

image can be used as an input to our model classifier. For

instance, size of ’J’ might be bigger than that of ’N’ in

’JABULANI’ as shown in Figure 4.4. An Example of Pre-

processing and segmentation is illustrated below. Once

segmentation is completed, we provide each 28*28 ROI as

an input to our model and use the converted result to display

the outcome in a formatted manner as illustrated in the last

figure.

C. Android application

The android application developed for the purpose of easy

hands on usage of this project was built with SDKtools

27.0.1 and gradle version 4.4. The android application has a

simple layout with a drawview, two buttons and a textview

and is inspired by the project uploaded by Sourcell: Link -

https://github.com/llSourcell/A_Guide_to_Running_Tensorf

low_ Models_on_Android. The drawview is a separate class

entity that handles user input. A user can draw on the white

canvas. Finger touch movements are used to identify the

positions where a black pixel is supposed to be drawn. One

button clears the drawview, another predicts the character

drawn on the drawview. The android application was linked

with our machine learning project created on python using

tensorflow. TensorFlow libraries were added to the libs

folder and the necessary changes were made in the gradle to

import tensorflow[9] classes into our android studio project.

After training our model in python, we had frozen its graph

into a Protobuf file to be used for android import. We have

added this Protobuf file as an asset. Now let’s discuss how

the application works. Once the user draws a figure on the

drawview, we convert this figure to a bitmap using Bitmap

class in java. A float array of size 784 is declared and all the

bitmap pixel values are stored in that array. Each of the 784-

pixel values is normalized by division to bring it between

the range of 0 and 1, that is the values used to train our

model. Then, the Tensorflowinterface node is filled with the

float array. We then call the Protobuf file located in our

asset folder and provide the array to the input node. The

interface returns us a result array with the probability of the

bitmap being each of the 62 characters via the output node.

We store this result in a new array of size 62. Now, we

display the character with the highest probability using the

textview.

The android application can be found online for further

research work and for the purpose of its improvement at:

https://drive.google.com/open?id=1JTgc4ZM0n3UVixXa-

HpBoU2mjlhlQ5oV

http://www.ijeat.org/
https://drive.google.com/open?id=1JTgc4ZM0n3UVixXa-HpBoU2mjlhlQ5oV
https://drive.google.com/open?id=1JTgc4ZM0n3UVixXa-HpBoU2mjlhlQ5oV

 International Journal of Engineering and Advanced Technology (IJEAT)

 ISSN: 2249-8958 (Online), Volume-8 Issue-2S2, January 2019

178

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number B10370182S219/19©BEIESP
Journal Website: www.ijeat.org

V. CONCLUSION

Using modern day techniques like neural networks to

implement deep learning to solve basic tasks which are done

with a blink of an eye by any human like text recognition is

just scratching the surface of the potential behind machine

learning. There are infinite possibilities and application of

this technology. Traditional OCR used to work similar to

biometric device. Photo sensor technology was used to

gather the match points of physical attributes and then

convert it into database of known types. But with the help of

modern-day techniques like convolution neural networks we

are able to scan and understand words with an accuracy

never seen before in history. We used the EMNIST data set

to train our model and tested different optimizers to finally

select Adamax as it not only yielded a high accuracy with

each epoch on our train data but also our test data. A further

application of accurate text OCRs is to help the partially

sighted and the blind in the absence of braille. By also

integrating a simple text to speech module in the app the

user can point his phone to any text which will then read out

the text for the user. A dedicated device can also be built for

this purpose with a more sophisticated image recognition

system which can identify objects to tell the user how many

steps to walk in which direction and even when to stop and

turn. The EMNIST datasets, a suite of six datasets,

considerably increased the challenge faced by employing

only the MNIST dataset. Even though the structure of

EMNIST dataset is similar to that of MNIST, it provides a

higher number of image samples and output classes and an

even more complex and varied classification task. It was

thus obvious to use it as the backbone of our project.

Without the use of EMNIST data set it would be practically

impossible to achieve this accuracy. Our current android app

requires the user to draw/ write the text on the screen and

then analyses it to identify the alphanumeric character. The

app can be developed further to import images from the

gallery in the user’s device and identify the text in present in

those images. Another development can be to convert text to

speech to further increase the applications of the mobile app.

The android app can be developed further using googles

cloud natural language API which provides natural language

understanding technologies like, sentiment analysis, entity

recognition, entity sentiment analysis, and text annotations

to understand the text further and better by providing

dictionaries that will rectify the mistakes made by the model

to provide a meaningful result. Another development can be

the use of googles cloud vision API to increase the accuracy

of the data read and even to identify different objects. [1]

REFERENCES

1. G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “Emnist: an

extension of mnist to handwritten letters,” arXiv preprint
arXiv:1702.05373, 2017.

2. L. Eikvil, “Optical character recognition,” citeseer. ist. psu.

edu/142042. html, 1993.
3. A. Graves and J. Schmidhuber, “Offline handwriting recognition

with multidimensional recurrent neural networks,” in Advances in

neural information processing systems, 2009, pp. 545–552.
4. V. Pham, T. Bluche, C. Kermorvant, and J. Louradour, “Dropout

improves recurrent neural networks for handwriting recognition,” in

Frontiers in Handwriting Recognition (ICFHR), 2014 14th
International Conference on. IEEE, 2014, pp. 285–290.

5. S. Espana-Boquera, M. J. Castro-Bleda, J. Gorbe-Moya, and F.

Zamora-Martinez, “Improving offline handwritten text recognition

with hybrid hmm/ann models,” IEEE transactions on pattern analysis
and machine intelligence, vol. 33, no. 4, pp. 767–779, 2011.

6. T. S. Gunawan, A. F. R. M. Noor, and M. Kartiwi, “Development of

english handwritten recognition using deep neural network,” 2018.
7. C. Wu, W. Fan, Y. He, J. Sun, and S. Naoi, “Handwritten character

recognition by alternately trained relaxation convolutional neural

network,” 2014 14th International Conference on Frontiers in
Handwriting Recognition, pp. 291–296, 2014.

8. F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.

9. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.
S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I.

Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L.

Kaiser, M. Kudlur, J. Levenberg, D. Man´e, R. Monga, S. Moore, D.
Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K.

Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Vi´egas, O.

Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X.
Zheng, “TensorFlow: Large-scale machine learning on

heterogeneous systems,” 2015, software available from

tensorflow.org. [Online]. Available: http://tensorflow.org/

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

