
 International Journal of Engineering and Advanced Technology (IJEAT)

 ISSN: 2249-8958 (Online), Volume-8 Issue-3S, February 2019

447

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number C10940283S19/19©BEIESP
Journal Website: www.ijeat.org

Abstract: Web Application Firewall (WAF) is the security tool

that acts as a shield for web applications and web application

servers from various classes of attacks. WAF acts as a

tool/scanner/interface between the server and web applications

that provide inclusive protection by validating the constraints

(restrictions) specified using 'Sec Rules' which are executed

when that particular application is protecting by WAF. Providing

protection to applications is one of the key aspects, as WAF can

protect against a number of Application Layer Security threats

which are usually not protected by numerous typical network

layer tools like IDS, IPS & other categories of firewalls. Web

applications can be easily attacked by hackers even with the

presence of normal firewalls. This is due to the limitation that a

normal firewall installed for network layer protection does not

work for application layer security issues. Security cheat sheets

are very popular for community developed by OWASP. They

provide first hand information for

developer/designer/analyst/administrator/any other who is part of

security system. This paper addresses the cheat sheet for

ModSecurity web application firewall tool, which will be helpful

for customizing new rules and also helps in designing the

documentation part similar to Readme Text file of the tool.

Index Terms: Application Security, Web Application, Web-

Application Firewall, ModSecurity, Cheat sheet.

INTRODUCTION

In this era of globalization, with the proliferation of

Internet users, many applications have been designed and

deployed to provide more and more services. The web

application has become esteem for the organizations. So, the

web servers are becoming the predominant target for the

cyber-attacks. Almost 70% of web attacks are triumphant

because due to inadequate amount of awareness and

knowledge on attack defense techniques. There is a need to

secure web applications from information leakage and

different kinds of cyber attacks. Generally, all web

applications use HTTP protocol for client and server

communication, it is the path from where attacks come

from. So this increases the acceptance of usage of web

application firewall.

Manuscript published on 28 February 2019.
* Correspondence Author (s)

Sonti Likitha, Security Analyst, eSF Labs Ltd., Tadepalli, Guntur

District Andhra Pradesh. India (likhitha.sonti@esflabs.com)
Dr. Korvi RajaSekhar, Professor, Department of CSE, Koneru

Lakshmaiah Education Foundation (Deemed to be University),

Vaddeswaram, Guntur District, AP, India (rajasekhar_cse@kluniversity.in)
Pasumarthy Sudeep, M.Tech, 2nd year Student, KLEF, Green Fields,

Vaddeswaram, Guntur District, AP, India
(Sudeep.pasumarthy@gmail.com)

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the

CC-BY-NC-ND license https://creativecommons.org/licenses/by-nc-nd/4.0/

Firewall: A firewall is a network security device, protects

the system which is used for tracking all the incoming and

outgoing network traffic and determines whether to allow or

block the request according to the predefined rules.

Web Application: Web application is similar to an

application program that is deployed on a remote server and

can be accessed from anywhere in web browser making use

of the internet.

Web Application Firewall (WAF): A web application

firewall is a tool which is used to detect, monitor and filter

all the data packets that are traveling to and fro through a

web application [2].

Depending upon the requirement they can be deployed as

a Network-based firewall, Host-based firewall, and Cloud-

based firewall. The WAF inspects each and every data

packet and compares them with the rules and analyzes the

packet at layer-7 application logic and filters out potentially

harmful traffic. Some of the vulnerabilities that can be

mitigated by using this WAF's are SQL Injections, Cross

Site Scripting, and Cross-Site Request Forgery.

Working of Web application Firewall:

Figure:1.0 represents the working of the web

application firewall.

When every a request is made by the client in the browser

it will communicate with web server in the form of HTTP

Request. Attackers generally try to exploit by making use of

this communication. To mitigate this organizations use tools

like WAF for secure communication. When a request is

made, first it passes through the WAF, WAF will compare

the request with all its rules, which are already configured

and decide whether to forward or block the request. If the

request is genuine it allows the request to the server. Once

the request reaches the server it will respond back by

sending back the requested information. WAF will also look

into that response request that is sent by the server. If any

sensitive information is passing through it, immediately it

will block that response request from server. The figure 1.0

depicts the function of the web application firewall.

Designing Security Cheat sheet for Mod

Security Firewall tool
Sonti Likitha, Korvi Raja Sekhar, Pasumarthy Sudeep

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/
mailto:Sudeep.pasumarthy@gmail.com
https://www.openaccess.nl/en/open-publications
https://creativecommons.org/licenses/by-nc-nd/4.0/

Designing Security Cheat Sheet for Modsecurity Firewall Tool

448

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number C10940283S19/19©BEIESP
Journal Website: www.ijeat.org

Web Application Firewall is generally classified into

three types:

Network-based firewall: Network-based firewall is

generally a hardware-based firewall which is configured

near to the application, where every incoming and outgoing

traffic passes through it and blocks any malicious or

dangerous traffic that has been deducted.

Host-based firewall: Host-based firewall is easy to

deploy as its code can be directly integrated into the

application code itself. This firewall can be customized

easily and the implementation includes low cost when

compared to network based firewall and cloud based

firewall.

Cloud-based firewall: Cloud-based firewall can be

deployed easily by taking the subscription and changing the

DNS. It will just divert the traffic to the firewall and filters

the traffic. The most challenging thing here for companies is

diverting the traffic through third-party providers.

Here are some of the popular web attacks explained:

Injection: SQL, LDAP, and OS injections are the

different types of injection flaws that occur when an attacker

sends untrusted data through an interpreter as a command or

query. If that malicious command or query executes, it will

allow the attacker to access that particular data present in

that database.

Cross Site Scripting (XSS): XSS is a flaw in an

application when it takes untrusted data without proper

validation through the web browser. This flaw allows

attackers to inject some malicious scripts in the victim's

browser by which he can hijack user sessions, redirects the

users to malicious websites and deface websites.

Cross-Site Request Forgery (CSRF): This is an attack

which forces users those who were already logged-on. The

attacker sends a forged HTTP request, which includes the

victim's session cookie and authentication information. Once

the victim clicks on that link, the attacker can gain access to

that account.

Here we are developing a check sheet that offers tips to

battle with most kind of web application attacks.

Cheat sheet: A cheat sheet is a documented paper which

acts as a reference tool that provides simple, brief

instructions for accomplishing a specific task. This is a

resource which consists of the technical information about

ModSecurity firewall. So, that it helps both the seasoned

users and people who are getting started with web

application firewall configuration & deployment.

MOD SECURITY FIREWALL

In order to protect, detect and prevent web applications

against web application attacks, we generally prefer a web

application firewall. ModSecurity is one of its kind.

ModSecurity firewall [3, 9] is one of the tool which is used

to stop/limit different types of web application attacks. It is a

cross-platform tool which works with three major web

server platforms i.e Microsoft IIS, Apache and Nginx.

SecRule is the rule configuration language provided by

this platform. It acts as a real-time web application

monitoring, logging and access control for every HTTP

request and response.

ModSecurity is commonly placed before the application

to defense against various types of vulnerabilities using the

OWASP ModSecurity Core Rule Set (CRS) [7]. Core Rule

Set is an open source ModSecurity rule written in SecRule

language which is one of the OWASP projects.

Open Web Application Security Project (OWASP) is an

online community where a group of security researches

work together to produce methodologies and tools in the

field of the web application. It publishes top attacks with the

name of OWASP Top 10 [8] which will be updated every

four years.

To detect threats, the ModSecurity engine is installed

within the web server or as a reverse proxy in front of a web

application. This is the reason for which it can be able to

monitor all the incoming and outgoing HTTP requests.

According to the rule, the rule configuration engine will

decide how the communication should be managed which

may include the ability to pass, drop, redirect, execute the

script and more.

As the web application was configured with OWASP

ModSecurity CRS V3 [11] running in reverse proxy mode,

the attacker directly can't access the server whereas every

request he made will redirect to the firewall first.

The main aim of CRS is to protect web applications from

wide range of attacks, which includes OWASP TOP Ten.

This provides protection against many common attacks.

SECRULES SPECIFICATION

For reading every request and analyzing it whether to

allow or deny the request we need a rule. ModSecurity also

has a rule language for writing a rule which is called

"SecRule". For writing a new SecRule we need to follow the

syntax. The syntax is "SecRule VARIABLES OPERATOR

[TRANSFORMATION FUNCTIONS, ACTIONS]". By

using the above syntax we can develop our own SecRule for

ModSecurity.

SecRule: SecRule means it indicates that this is a new

rule.

Variable: Variable is used to identify every part of the

HTTP transaction that deals with the rule. It will abstract

every transaction and makes it accessible through Variables.

The key thing about the variable is it contains special

characters of any byte value. The main characteristic of

ModSecurity is to pre-process the transaction data and

makes it easy for the rules to access on the logic of

perception. There are nearly 77 variables in ModSecurity.

Operator: Operator is used for analyzing the variable.

Here we generally go with regular expressions; however

there are many other operators that can also be used.

Operator always starts with @ character. It is always placed

at the starting of the second SecRule token. Some of the

string matching operators that are commonly used are @rx,

@pm, @endswith, @within, @contains. @beginswith.

Transformation Function: A transformation function is

specified for every rule which instructs ModSecurity to

check how a variable will change before the analysis process

is done.

http://www.ijeat.org/

 International Journal of Engineering and Advanced Technology (IJEAT)

 ISSN: 2249-8958 (Online), Volume-8 Issue-3S, February 2019

449

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number C10940283S19/19©BEIESP
Journal Website: www.ijeat.org

Action: Action specifies what to do if the rule matches.

This is the trickiest part of ModSecurity. They make it

possible to react to the events, and this is what the actual

thing which makes the advanced features possible. There are

seven categories in the action field. They are allow, block,

deny, drop, pass, proxy and redirect.

Regular Expression: Regular expression is the pattern

matching method used in programming. These provide an

adaptable and brief means to peer strings to text. Regular

expressions are used for data validation for search engines,

syntax emphasizing the systems.

OWASP and Comodo [15] are two organizations that are

providing free rule sets which can be used by ModSecurity.

There are few things that need to know before installing

and configuring the ModSecurity firewall. There are lot of

options to build a rule, but few are mandatory to follow.

They are like explained below.

• Every rule should contain a VARIABLE, an

OPERATOR and ACTION.

• If no OPERATOR is taken then @rx works as the

default operator.

• For ACTION, action id is required. However

SecDefaultAction consists of several actions like phase,

log, auditlog, pass. Phase:2 acts as a default phase,

when no phase is included.

• Every rule will have a disruptive ACTION. This tells

the rule what to do when the transaction is initiated. If

there is no disruptive action then pass is the default

action.

• Transformations are optional but these are used to

prevent the rule from being bypassed.

RESULTS & DISCUSSIONS

Generally a security cheat sheet must contain important

elements: problem statement, different mechanism/solutions

for the problem (s), description of the solution(s) in terms of

steps required for each one described. The main motive

behind designing the cheat sheet is to give a detailed

understanding of the tool for any naive person.

This paper talks about the cheat sheet for ModSecurity

firewall tool where it will brief all the key information that

is probably to be on a test. We are dividing the sheet into

three important components Wiz: Component 1 - Basic

information about the tool, Component 2 - Syntax of

Security rules including customization against new rules to

be defined for other attacks which are not available in the

ModSecurity database and the third one is Component 3-

Example scenario in terms of sample rules.

Component 1 is described in Table - I which will give all

the information of the key terminology. This table is divided

into two parts. The 1st part deals with the basic terms and the

2nd part describes key terminologies so that any person with

non-technical knowledge can also understand it easily. This

table explains what ModSecurity is? What are the general

attacks that are performed on layer-7? How this can be

installed and configured? How rules work? How rules and

the rule syntax can be defined?

TABLE - I

Basic Terms Description

ModSecurity ModSecurity is an open-source

cross-platform web application

firewall.

Layer-7 Attacks SQL Injection, Cross-site-

scripting, Brute Force, Path

Traversal, Cross-site request

forgery, Denial of service.

ModSecurity

Installation &

Configuration

Windows: Can be installed using

IIS MSI installer.

Linux: Can install and configure

the ModSecurity through a

command line.

RuleSet ModSecurity makes use of

OWASP CRS (Core Rule Set) as

it is generic attack detection.

Top Rules Application Attacks: XSS, SQLI,

LFI, RFI, RCE, File-Detection,

DOS-Protection,

Exclusion rules: Wordpress,

CPANEL.

Data leakages: SQL, JAVA,

PHP, IIS.

Rules Working Firewall compares each and

every request with the rules and

determines if it should be

allowed or denied.

Customize New Rule SecRule Variables Operators

[Transformation function,

Action]

Definitions SecRule: Defines that this is a

new rule.

Variables: Interact with each

HTTP transaction and make it

available for the rules.

Operators: Specify how a

variable should be analyzed

Transformation Function: This

specifies how a variable should

be changed for the analysis.

Action: Defines what to be done

if the rule matches.

Component 2 shown in Table - II describes all the other

alternatives to create our own rule. This table only

concentrates on the rule customization. This explains

Directives, Variables, Operators and Actions. Whenever we

want to create a new rule these four terms play a key role.

Whenever we want to create a rule we will pick one from

Directives, can select two or more from Variables, an

Operator and an Action. The combination of all these can

make a successful SecRule.

Table – II plays a crucial role in the development of a

new SecRule. Successful rule making can only be done if

we know the problem statement. So that we can pick up the

right components and can place them at right place to stop

that particular attack.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Designing Security Cheat Sheet for Modsecurity Firewall Tool

450

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number C10940283S19/19©BEIESP
Journal Website: www.ijeat.org

TABLE - II

Rule Customization

Rule Syntax: SecRule Variables Operators [Transformation

function, Action]

Directives: SecAction

SecDefaultAction

SecMarker

SecRule

SecRuleInheritance

SecRuleUpdateActionById

SecRuleRemoveById

SecRuleRemoveByMsg

SecRuleScript

Rule language is executed by using directives. Here we have

9 directives, by using these directives we can make rules.

SecRule is considered as the main directive where we can

create a new rule. Every Directive has its own importance.

Variables: ARGS

ARGS_NAMES

ARGS_GET

ARGS_POST

REMOTE_USER

REQUEST_BODY

REQUEST_COOKIES

REQUEST_FILENAME

REQUEST_HEADER

REQUEST_METHOD

REQUEST_PROTOCOL

REQUEST_URI

RESPONSE_BODY

RESPONSE_HEADER

RESPONSE_HEADER_NAMES

RESPONSE_PROTOCOL

RESPONSE_STATUS

RESPONSE_CONTENT_LENGTH

There are about 77 variables in the recent version of

ModSecurity, here are some of the mostly used variables.

These variables are used to identify the HTTP transactions

that are passing through the request. ModSecurity will

extract all the information from the request and make it

available for the rule in the form of variables. So that rules

will work on it.

Operators: @rx

@pm

@eq

@ge

@gt

@le

@lt

@contains

@endswith

@beginswith

Operators work with the transformed variable, how it should

be analyzed. Regular Expressions are commonly used

operators. ModSecurity supports with other operators too.

All Operators starts with ‘@’ character. @rx and @pm are

most commonly used Operators, because of their versatility

(@rx) and speed (@pm).

Actions: Allow

deny

block

drop

Pass

proxy

status

pause

skip

chain

msg

id

rev

severity

Log

Action defines what it should be done when the rule

matches.

Component 3 described in Table - III shows us the

example and working rule. The example rule and working

rule both are given on cross-site scripting attack. Example

rule is explained briefly so that a normal user can

understand it easily.

The below Figure 1.1 represents one of the working rule

used to protect the web applications from cross-site scripting

attack. Here in this particular example we have shown you

how ModSecurity Firewall is configured with OWASP Core

Rule SET (CRS). Whenever ModSecurity finds a request

with a script tag, this rule will be activated.

TABLE - III

Example rule with explanation:

SecRule ARGS|REQUEST_HEADERS “@rx

(?i)(<script[^>]*>[\s\S]*?<\/script[^>]*>” id:201, msg:

‘XSS Attack’, severity:critical, deny, status:404

DIRECTIVE:

SecRule – Make a new rule.

VARIABLES:

ARGS - Request Parameters.

REQUEST_HEADERS - All of the request headers.

OPERATOR:

“@rx (?i)(<script[^>]*>[\s\S]*?<\/script[^>]*>” - Performs

a regular expression match pattern provided as parameter.

ACTION:

id, msg, severity, deny, status - These all are the actions that

will be performed if the pattern matches.

Figure:1.1 Represent one of the working rules.

http://www.ijeat.org/

 International Journal of Engineering and Advanced Technology (IJEAT)

 ISSN: 2249-8958 (Online), Volume-8 Issue-3S, February 2019

451

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number C10940283S19/19©BEIESP
Journal Website: www.ijeat.org

ACKNOWLEDGEMENT

This work is supported by the eSF Labs Ltd as part of the

project/consultancy work taken by Department of Computer

Science and Engineering of KLEF with I am very thankful

to all my colleagues at eSF Labs Ltd. for their continuous

support and helping me in completing the project.

CONCLUSION

The mentioned cheat sheet provides a complete awareness

of ModSecurity web application firewall (WAF) tool. We

have provided all the requirements for configuring,

installing and deploying ModSecurity WAF. This paper

covers the importance of web application firewall, some of

the web application attacks including cross site scripting,

SQL injection, Brute force, DoS and File Detection. The

cheat sheet will give the sequence of steps required to

execute any attack and corresponding mitigation is shown

with Sec Rule. With the help of this cheat sheet, a normal

user can be able to configure and write new rules on his/her

own depending up on the usage.

REFERENCES

1. Jatesh Jagraj Singh, Hamman Samuel, Pavol Zavarsky,

“Impact of Paranoia Levels on the Effectiveness of the

ModSecurity Web Application Firewall,” IEEE Xplore: 28

May 2018.

2. Asrul H. Yaacob, Nazrul M. Ahmad, Nurul N. Ahmad,

Mardeni Roslee, “Moving towards Positive Security Model

for Web Application Firewall ” International Journal of

Computer and Information Engineering, Vol:6, No:12, 2012.

3. “what ModSecurity can do?” ModSecurity.

4. Online “ModSecurity Rule Writing” KEMP Technologies.

5. Ryan C. Barnett, Shreeraj Shah “Securing Web Services with

ModSecurity” 9 June 2005, Oreilly.

6. Ivan Ristic “ModSecurity Handbook” 30 jan 2010.

7. Online “OWASP Core Rule Set Project” OWASP.

8. “OWASP TOP10 2017” OPEN WEB APPLICATION

SECURITY PROJECT.

9. “ModSecurity WAF” SpiderLabs/ModSecurit, GitHub.

10. Online “Defense against web application attacks” OWASP

11. Online “New Features in CRS 3” ModSecurity.

12. Ryan Barnett, Greg Wroblewski “ModSecurity as Universal

Cross-platform Web Protection Tool” media.blackhat.

13. Online “OWASP Cheat Sheet” OWASP_Cheat_Sheet_Series.

14. Sam Hobbs “Example Whitelisting Rules for Apache

ModSecurity and the OWASP Core Rule Set” 22 sep 2015.

15. Online “comodo web application firewall” waf.comodo.

16. Alexander Endraca, Bryan King, George Nodalo, Maricone

Sta. Maria, and Isaac Sabas “Web Application firewall

(WAF)” ijeeee, vol. 3, 6 Dec 2013.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

