
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-8 Issue-5, June 2019

1992

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number E7650068519/19©BEIESP
Journal Website: www.ijeat.org

 Abstract: Full adders add three input numbers and give sum

and carryout. The full adders which are faster and energy saving

is the need of the hour. Simplifications of the Boolean expressions

for addition of two n-bit numbers is one method to achieve this.

Other method is to use combinational circuits. Various full adders

are proposed in literature. Carry save adder is one of them. They

are used in many places. The sum and carry of two 32-bit

numbers are calculated in this paper. The sum and carry of inputs

is calculated as in carry save adder. The carry is added to the sum

based on the values of sum bit resulting in final sum and carry.

The proposed logic is simulated using Quarturs 2 toolkit. An

improvement in area by 16% with time improvement of 8.56% and

comparable power consumption is observed for chosen

parameters when compared with model proposed in [5].

Index Terms: Area, Boolean logic, Carry save adder, Full

adder, Performance

I. INTRODUCTION

The main parts of computer are memory, central processing

unit (CPU) and input/output devices. The arithmetic and

logic unit (ALU) and control unit (CU) are parts of the CPU.

The arithmetic and logic unit has arithmetic and logic

circuits. The arithmetic unit contains integer and floating

point units. The four basic arithmetic operations supported

by ALU are addition, subtraction, multiplication and division

[6]. Usually two’s complement addition/subtraction is used

for addition and subtraction. Full adder circuits with three

inputs and two outputs are used for integer addition.

Examples of full adder circuits proposed in literature are

ripple carry adder, carry save adder, carry select adder, carry

skip adder, parallel prefix adder [1, 2]. In carry save adder,

two n-bit numbers are added to give sum and carry. The sum

and carry of individual bits are calculated separately. The

result is added according to their weights to give the result.

This model is called Trad model in this paper. Wallace tree is

one method to implement carry save adders [2]. A carry save

model with improved area, power and timing is proposed in

[4]. This model is called CAS1 in this paper. A method using

universal gates to realize carry save adder is proposed in [5].

This model is called CAS2 in this paper. For the CAS1

model an improvement in area by 27% with power saving of

8.5% with timing improvement of 6.8% compared with

traditional model Trad is observed [4]. For the CAS2 model,

an improvement in area by 33% over Trad, 8.16% over CAS1

model, power saving of 8.65% over Trad model and

comparable power consumption with CAS1 model is

Manuscript published on 30 June 2019.
* Correspondence Author (s)

S Subha, Department of IT and Engineering, SITE, Vellore Institute of

Technology, Vellore, T.Nadu, India

© The Authors. Published by Blue Eyes Intelligence Engineering and

Sciences Publication (BEIESP). This is an open access article under the
CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

reported [5]. A timing degradation of 8% over Trad model

and 17% over CAS1 model is observed for CAS2 model.

This paper proposes method to perform addition using carry

save adder. The input is two 32 bit numbers. The sum and

carry of inputs is calculated as in carry save adder. The final

answer sum and carry is calculated based on the value of the

calculated sum in step 1 and one of the inputs at each stage

using modified equations of the sum and carry of the full

adder. The proposed model is simulated using Quartus2

Toolkit. An improvement in area by 16% with performance

improvement of 8.56% and comparable power consumption

is observed for chosen parameters compared with CAS2

model.

II. MATHEMATICAL BACKGROUND

For any full adder circuit given in Table 1 the sum is given as

the XOR of the inputs. The carryout is ab or bc or ca for

inputs a, b, c [3].

Table I: Full Adder Truth Table

The sum and carry of inputs are calculated as in carry save

adder. The carry is added to the sum based on the following

logic. Consider two two bit numbers a and b with carryin c.

Let a be a[1]a[0] and b be b[1]b[0].

1. Initialize sum to one of inputs say b i.e. sum[1] =

b[1] sum [0] =b[0].

2. Initialize carry as sum. Thus c[0] = sum[0] and c[1]

= sum[1].

3. If a[0] = 1, sum[0] = !sum[0]. If a[1] = 1, sum[1] =

!sum[1].

4. If a[0] = 0 carry[0] = 0. If a[1] = 0 carry[1] = 0.

5. If sum[0] = 0, then sum[0] = c and carry[0] = a[0]

6. If sum[0] = 1 then sum[0] = !c and carry[0] = c

7. Make c = carry[0]. Perform steps 5-6 for bit-1

8. Make cout = carry[1]

9. Stop.

The calculations take advantage of the value of sum bit in i-th

stage and calculate the correct value using the carryin. The

carryout is made equal to input a if the sum is zero and equal

to carryin otherwise.

A Carry Save Adder Design

S Subha

A B C Sum Carryout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0

0 1 1 0 1
1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/

A Carry Save Adder Design

1993

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number E7650068519/19©BEIESP
Journal Website: www.ijeat.org

III. PROPOSED MODEL

Consider the full adder truth table given in Table 1. The carry

save adder design 2 is given next.

Algorithm carry_save_adder_design2 : Given two n-bit

numbers this algorithm finds the sum of two numbers. The

numbers are stored in array from index 0 to n-1.

1. Start

2. The sum is one of the inputs say b

3. The carry is sum

4. The sum is calculated based on other input a. If

other input is one the sum is negated else it is b

5. If the other input a is zero, the carry is set to zero

else it is b i.e. sum in step 1. The cin is the carryin

in least significant bit (LSB). It is zero initially. For

the LSB the logic is

if (sum == 1'b0) sum = cin and cout = a[0]

else if (sum == 1'b1) sum = !cin; cout = cin;

6. For all other bits, cin is the carry out of

previous bit.

The logic for these bits is given next.

if (sum == 1'b0) sum = cin and cout = a[i]

else if (sum == 1'b1) sum = !cin; cout = cin;

7. The final carryout is calculated as follows.

if (cin == 1'b0) then cout = carryout(n-1) else cout = !carryout

(n-1)

8. Stop

In the proposed model, the XOR equation of the sum and the

carryout equation for full adder are calculated by initializing

the sum to one of the inputs and carry to one of the inputs.

The final sum is based on the carryin value at each bit and

final carryout is based on the carryin value. This is the logic

given in the proposed algorithm.

Example: Consider two four bit numbers a= 1010 and

b=1101. The steps in the algorithm are given below to

calculate the sum of a and b.

1. Sum = b = 1101.

2. Carry = sum = 1101

3. Inspect a. If a[i] is one the sum[i] is negated. A array is

denoted by a[3..0]. We find that a[3] and a[1] is one..

Hence the sum is 0111.

4. If a[i] is zero, carry is zero else it is b. We find that a[0]

and a[2] are zero. Hence carry is set to 1000

5. For cin in position zero, it is zero. From step 3 sum[0] =

1. Hence sum[0] =! cin = 1 and cout = a[0] = 0

6. For i=1, sum[1] = 1. The cin = 0. Hence sum[1] = !cin =

1 and cout = cin = 0.

7. For I = 2 sum[2] = 1, cin = 0. Hence sum = !cin = 1 and

cout = cin = 0.

8. For i=3 sum[3] = 0 cin = 0. Hence sum = cin = 0 and

cout = a[3] = 1.

9. The final answer is 10111.

IV. SIMULATIONS

The proposed model in section 3 is simulated using Quartus 2

Toolkit. The input is two 32 bit numbers. The model is

compared with CAS2. The simulation parameters are given

in Table 2.

Table II Simulation parameters

Parameter Value

Processor family Cyclone II

Package FBGA

Pin count 484

Speed grade Fastest

Target Device Auto select by Fitter

The simulation results are shown in Table 3

Table III Simulation Results

parameterprop cas2 %improve

area 75/14448 90/14448 16.66667

timing 8.173ns 8.939ns 8.569191

power 78.01mW 78.27mW 0.332183

As seen from Table 3 an area improvement of 16% with

timing improvement of 8.56% and comparable power is

observed for the proposed model compared with CAS2

model.

V. CONCLUSION

A carry save adder with improved area and performance is

presented in this paper. The proposed model calculates the

carry and sum of inputs as in carry save adder. The final sum

and carry are calculated using the calculated sum value and

carry in value. The proposed model reduces the number of

Boolean logic gates compared with model presented in

CAS2. The proposed model is compared with model CAS2.

An area improvement of 16% with 8.56% timing

improvement and comparable power is observed for the

proposed model compared with CAS2 model.

REFERENCES

[1] Behrooz Parhami, Computer Arithmetic: Algorithms and

Hardware Designs, Oxford University Press, 2000

[2] Israel Koren, Computer Arithmetic Algorithms, Prentice Hall, NJ
1993

[3] Morris Mano, Digital Logic and Computer Design, Prentice

Hall, 1979
[4] S Subha, An Improved Carry Save adder design, International

Journal of Advanced Science and Research (IJASR), Vol. 3, No.

1, January 2018, pp. 01-02
[5] S Subha, A Power Saving Carry Save Algorithm, Proceedings

of ICICES 2018(IEEE to be published IEEE conference ?),

March 21-22, 2018

[6] William Stallings, Computer Organization and Architecture

Eight Edition, Pearson Prentice Hall, 2010

AUTHORS PROFILE

S. Subha has done her Ph.D in computer Engineering in

caches from Santa Clara University, CA, USA. Her research

interests are in processor cache memories,
computerarithmetic. She has teaching experience of

seventeen years, software industry experience of six years.

She is presently working in Vellore Institute of Technology, Vellore, India.
She has successfully guided /co-guided four research scholars in area of

computer architecture, parallel processing, cloud computing at VIT, Vellore.

She has authored/co-authored fifty journal papers in international journals,
thirty nine international conference publications. She has worked as

reviewer of international journals for past five years

http://www.ijeat.org/

