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 
Abstract: Frequent Itemset mining (FIM) concept and 

limitations are explored in this paper, for the purpose of 
extracting unknown hidden patterns as itemsets from the 
transactional database. Since candidate generation and support 
calculations are the major tasks in FIM, the major limitations of 
FIM are tackled, (i) huge possible frequent itemsets are generated 
as candidates at each pass (ii) Data base scan at each pass to 
calculate the support of the generated itemsets (iii) generated 
itemsets are highly sensitive to the minimum support threshold. 
SS-FIM a single scan algorithm is to deal with the above 
limitations. However, several unnecessary itemsets are being 
hashed in the buckets. To overcome the limitations, a partition 
based approach is proposed in this paper. The proposed approach, 
PSSFIM, takes single scan of the database to identify frequent 
itemsets. The unique feature of PSSFIM allow to generate size of 
candidate itemsets independent on the minimum support. It 
allows the candidates in hash that are possible for frequent, which 
intuitively reduces the cost in terms of verifying the support of 
generated candidates.  It is compared with SS-FIM and Apriori 
with the standard datasets. The results show that the PSSFIM is 
good at the comparison of SS-FIM and Apriori. 
 

Keywords : Apriori, Frequent Itemsets, Run time, Support.  

I. INTRODUCTION 

Frequent Itemset Mining (FIM) is a popular data mining 
technique in extracting hidden and important itemsets from a 
given database. Let TDB be a Transactional Data Base 
recorded with a set of tuples [1] {T1, T2, T3, …., Tm}, each 

transaction is recorded with a set of distinct {I1, I2, I3, …., 

In}. An itemset Y is set of items where Y≤I. The support 

count of an itemset is computed as the occurrence of itemset Y 
in the transactions. And the actual support is from its 
occurrence and total number of transactions in the database. 
An itemset Y is frequent if its support is higher or equal than 
the given user threshold value. So, the aim of FIM is to derive 
frequent itemsets from the TDB.  

Investigation of FIM is started with two categories of 
approaches. In the first category, they generate all possible 
itemsets length K at K-levels and then test their occurrence in 
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the TDB to determine frequent itemsets. They use Apriori 
heuristic [1] to reduce unnecessary candidate itemsets. The 
second category approaches relies on FP Growth heuristic 
[2]. They maintain compressed tree format of TDB in main 
memory. And visit in recursive manner to find frequent 
itemsets. Although this category avoids candidate generation, 
these approaches consumes more memory when dealing with 
large databases with less minimum support. 

Several approaches have been carried out for deriving 
frequent itemsets on the basis of the above two approaches. 
Although they are effective in less candidate generation and 
passes over the database. They consume more storage space 
and execution time in-terms. Hence it is motivated researchers 
to propose single scan approaches for deriving frequent 
itemsets.  

One of the approaches is SS-FIM proposed by Youcef et al. 
[17]. They generate all the candidates for each transaction and 
then stores them into hash table to maintain support of each 
itemset. While generating each itemset, they check itemset 
presence in the hash, then inserts into hash if it is not already 
stored in the hash table. Otherwise it increments the support of 
itemset. After the candidate generation, itemsets hash table 
are examined to decide frequent itemsets. Although it is single 
scan, it consumes huge storage space when the transaction 
length is high.  

This paper propose a Novel approach called Partition 
Based Single Scan Approach (PSS-FIM) for mining frequent 
itemsets. It is aimed at the improvement of SS-FIM with lesser 
number of candidates. Here, initially, all the transactions are 
divided into equal partitions. Candidate itemsets are 
generated from each transaction and maintained in hash table, 
if it is already not hashed, otherwise counter incremented by 
one.  

When half of the partitions are visited, the candidates are 
tested before storing them into the hash table. At the end, the 
cumulated support count of each itemset in the hash table is 
considered to determine frequent itemsets. The contribution 
of PSS-FIM is to avoid unnecessary candidate itemsets which 
are going to be infrequent. The PSS-FIM approach has been 
investigated on various datasets against the Apriori, SS-FIM 
in result section. The results show that PSS-FIM outperforms 
other approaches when the minimum support is low. 

The organization of the paper is presented as follows. The 
very next section reviews the FIM algorithms. In the next 
section, Apriori and SS-FIM are presented and followed by 
PSS-FIM algorithm. The result analysis of the PSS-FIM is 
presented in next section. Conclusion is presented in end 
section. 
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II.  RELATED WORK 

Frequent Itemset Mining is one of the traditional data 
mining technique. One of the reasons for FIM is to derive 
hidden correlation between itemsets in a strategic manner to 
avoid the difficulties of candidate generate and test strategy, 
where all the candidates are generated and then tested. To 
overcome these issues, level-wise candidate generates and 
test approach is proposed, where candidates are generated and 
tested at level wise (K-size) and k-length candidate itemsets 
are generated from (k-1) size frequent itemsets. Hence some 
of the unnecessary computation is not done. However, too 
many candidates are needed to test with many passes.  

In line to the above issues Agrawal et al. [1] proposed 
Apriori concept which is a level wise candidate generate and 
test approach. It follows the property stating that if any 
subsets of frequent itemsets must be frequent. Hence the 
candidate itemsets are not considered whose subsets are not 
frequent. In addition to that one more property is included, 
Anti-monotonic property states that an itemset is not frequent 
then all of its supersets are not frequent. Though the above 
properties effective in-terms of unnecessary candidates, it is 
not efficient in-terms of passes. Many techniques are based on 
Apriori.  

Table 1 shows the transaction database, which is recorded 
with 8 transactions and items {a, b, c, d, and e}. Illustration of 
Apriori is presented in Figure 1, where the list of candidates 
itemsets and frequent itemsets are visualized at various levels 
with respect to the minimum support threshold 50% 
(count=4).  

Candidate itemset length 1 is tested against the TDB to 
cumulative the support to compare with the minimum support 
and it is visualized in Figure 1. And also, candidate length-2 
and 3 are generated from frequent length-1 and length-2 by 
joining C1 with C1 and C2 with C2 when they share common 
k-1 length. Since no possibility of C3 candidates, it is 
terminated. After the step, frequent itemsets, when minimum 

support is 4 = {{a}, {b}, {c}, {a b}, {b c}}. 
Table 1:  Illustration of Transactional Database 

 
TID Purchased Items 

1 a,b,e 
2 b,d 
3 b,c 
4 a,b,d 
5 b,c 
6 a,c 
7 a,b,c,e 
8 a,b,c 

 
Limitations of Apriori is motivated researchers to enhance 

the approach, which are (a) too many data base scans (b) too 
many candidates when the minimum threshold is low. One of 
the approaches is DIC (Dynamic Itemset Counting) proposed 
by Brinet et al. [3]. Here, TDB is divided into equal parts, 
classified them as strong, suspected small and large in first 
partition. In subsequent partitions to validate candidate 
itemsets and pushed into the candidate itemsets from 
suspected to large. Though it is efficient it is suitable when the 
TDB is fitting into the main memory. 

Zaki et al. proposed variation of FIM is Eclat [5]. The 
database is represented as vertical list of transactions tidlist. It 
is based on disjoint equivalence classes, where itemsets are 
categorized into subsets based on its common k-1 prefixes. 
Next level candidate itemsets K-lenght are generated from its 
previous length (k-1) equivalence classes. The support of 
candidate itemsets are determined from the intersection of 
tidlist. And also proposed [6] another approach which is a 
variant of Eclat. It was able to derive regular patterns. 
Another variation of Apriori is proposed by Muller et al. [4]. 
It is a tree kind of approach which is depends on prefix 
structure. Thus allows faster performance. However, this kind 
of structure usually requires large space for both candidates 
and frequent itemsets. 

 

 
Figure 1: Apriori Illustration of Table 1 
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To avoid the limitations of Apriori based approaches, 
FP-Growth kind of approaches are proposed, where the 
database is represented in compressed tree FP. It is composed 
into phases. The first phase- FP Tree construction, where each 
transaction is inserted as a path. The second phase, frequent 
itemsets identification- frequent itemsets are derived by 
visiting each node in a recursive manner. Due to the structure, 
they are fast in response. However, it is limited to the small 
database. To improve FP-growth, Cerf et al. [8] proposed 
NFPgrowth algorithm. Frequent patterns are maintained in 
independent table to speed up mining process. To handle 
uncertain databases, modified FP-growth [7] was proposed. 
In further reducing the tree traversing time, variant FP array 
techniques [9,10] were proposed. It was extended to derive 
maximal, closed and categorical itemsets. 

The above approaches show their abilities when the input 
database size is moderate. They need to alter for the large 
databases whose size starts from millions [11]. The result of 
the above investigation, to reduce the database competency, 
bio inspired approaches BSO-ARM [12], PeARM [14], and 
PGARM [13] proposed. However, they are not suitable for 
FI’s extensions. 

To overcome the difficulties of FIM, Youcef et al. [17] 
proposed SS-FIM (Single Scan Frequent Itemset Mining) 
approach, where all the possible itemsets are considered as 
candidates that are obtained from each transaction and stored 
in hash table. For a new itemset, if an instance is in table, then 
its counter is incremented. Otherwise a new entry is created 
with count one. At the end, counts of all entries are compared 
against minimum support and determines a frequent itemsets. 
The above procedure is done with a only one scan on the 
given database. However, too many candidates are generated 

when the minimum support is low and dense databases. 
SS-FIM approach is illustrated for the table 1 is presented in 
Figure 2. 

Limitations: Similar to Apriori, it is very sensitive to 
minimum support. It generates huge itemsets when it is 
varying from high to low. 
 

III. PARTITION BASED SINGLE SCAN FREQUENT 

ITEMSET MINING (PSS-FIM) 

This section discusses the proposed approach PSS-FIM, 
which is an extension of SS-FIM. Then theoretical analysis 
and result analysis w.r.t Apriori and SS-FIM. 

The purpose of PSS-FIM is to reduce search space size 
while visiting transactions. It relies on the divide and mine 
approach, divide the transactions into equal partitions M 
where |M| is (minsup*|TDB|/2), and generates all the 
candidates for each transaction. It increments the support of 
itemset in hash table, If it is already indexed. Otherwise, it 
creates a new entry with the itemset name in hash table 
initializes counter value with one. This process is repeated for 
all the partitions. One of the goal is to avoid the itemsets 
which are not going to become frequent. After visiting half of 
the partitions, if I is newly generated itemset and not indexed 
in the hash table then it is discarded, because of the partition 
concept, it is not going to be frequent. Such kind of itemsets 
are not stored in hash table. Hence the computation for such 
kind of unnecessary itemsets is achieved with no information 
loss. 

 
Figure 2: SS-FIM illustration of Table 1 

 
 

 
  



 
Partition based Single Scan Method for Mining Frequent Itemsets 

4920 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication  

Retrieval Number F9237088619/2019©BEIESP 
DOI: 10.35940/ijeat.F9237.088619 
Journal Website: www.ijeat.org 
 

PSS-FIM algorithm is complete, because it derives FI’s 

directly from the candidate itemsets which are generated 
directly from the given TDB, whose support is ≥minsup. After 

visiting minsup of TDB, if the newly generated itemset is not 

indexed in the hash table, there is no chance of getting the 
frequency of minsup. Hence it is complete. Algorithm 1 
describes the step by step activities of PSS-FIM. 

Algorithm 1: PSS-FIM Algorithm 

 
PSS-FIM takes transactional database TDB as input, and 

minsup given by the user. It divides TDB into M partitions 
which are equally size shown as first statement. Size of each 
partition is the half of minsup of TDB. Also uses data 
structure hash table to maintain the candidate itemsets along 
with support value as occurrence in step 8 and 9. After visiting 
half of the partitions, the generated itemset is new to the hash 
table then it is discarded in step 9. At the end, it returns all the 
itemsets whose support value is ≥ minsup. 

 First, set of possible itemsets C is generated from each 
transaction Ti. For instance, consider transaction T1 {a,b,c}, 
then C={ { a }, { b}, {e}, {a b}, {ae}, {be}, {abe}}. After 
that, each itemset I ∈ C is stored in hash table h. Initially, h is 
empty, then itemsets are stored with count value 1, where 
index name is same as item name. After visiting all the 
transactions, supports of all the keys are compared with 
minsup to determine frequent itemsets. 

Illustration: Figure 3 shows the pictorial representation of 
PSS-FIM over TDB of Table 1 for minsup=50% (0.5 or 4).  It 
starts by partitioning TDB into 4 partitions. And then it starts 
by reading the transaction T1 {a, b, e} and extracts the 
possible itemsets are {a}, {b}, {e}, {ab}, {ae}, {be} and 
{abe}. The hash table h is empty, then all these itemsets are 
stored into the h and support is initialized to 1. It continues till 
the half of the partitions are visited, and then for new itemsets, 
if it is not indexed in h, then itemsets are discarded. For 
example, T6 of P3 is {a, c}, then C= {a, c, ac}. Since the 
availability of {a} and {c}, its counts are cumulated by 1. 
Itemset {ac} is discarded, since no entry is in h and not 
possible to become frequent. 

Theoretical Analysis: Time complexity of PSS-FIM is 
determined from the cost of (i) Possible Itemset generation 
(ii) Frequent Itemset identification. The cost for candidate 
generation of each transaction Ti is -1, and for TDB is 

, where N is |TDB|. Partition heuristic of 

PSS-FIM discards some itemsets which are not frequent, 
denoted as IX. Hence it is  the complexity 

of possible itemset generation is 
,          -- (1) 

Where p is possible items (maximum) for each transaction.   
The second one, to find FI’s, hash table need to look at each 

index for compute support, then operation is .  
The total running cost of PSS-FIM is 

,           -- (2) 
Whereas the Apriori complexity is ), and  
SS-FIM is 

             -- (3) 
Although Equation 1 and 3 has exponential form, while 
equation 1 is polynomial, 1 and 3 yields lower values 
compared to 2 for most TDB’s, because p is usually lesser 

than N. Equation 1 outperforms Equation 3, because of IX. 

IV. RESULT ANALYSIS 

To present the performance details of PS-FIM, experiments 
are conducted on datasets [16] on the system with the 
configuration of 4GB RAM and Intel P3.  
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One of the dataset is Bolts, It is represented with 2178 
transactions. Each transaction is comprised of items 8-16. 
Other dataset where size is medium, comprised with 
transactions of 59000-100000. And each one is comprised of 

items 500-16000 with on average 2-10. The other kind of 
dataset is large database BMS POS. It has used 1660 items on 
average 2.5 in 500000 transactions. 

 
Figure 3: PSS-FIM illustration of Table 1 

Table 2 is recorded with runtime comparison of PSS-FIM, 
SS-FIM and Apriori. It says that Apriori has better 
performance than SS-FIM and PSS-FIM. However, PSS-FIM 
exhibits double performance than others when the datasets are 
large and medium. Table 2 is reported that PSS-FIM shows 

good performance for dense databases. 
Experimental result on BMS-POS dataset is presented in 

Figure 4. It shows that PSS-FIM takes less execution time 
compared to the other approaches while minsup decreases.

Table 2. Execution Time of PSS-FIM, SS-FIM and Apriori 

Dataset  Apriori-Maximal SS-FIM 
PSS-FI

M 

Bolts 4 140 110 

Sleep 6 110 80 

Pollution 20 821 641 

Basket ball 15 18 17 

Quake 29 50 45 

BMS-WbView-1 1002 45 34 

BMS-WbView-2 3985 80 65 

retail 4895 525 400 

Connect 2600 1285 1021 

BMS POS 9825 500 411 

 

 
Figure 4: Runtime (sec) of PSS-FIM, SS-FIM and Apriori w.r.t minsup for BMS POS 
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V. CONCLUSION 

This paper has proposed an intelligent FIM algorithm. It 
consumes less candidate itemsets and one scan to extract all 
frequent itemsets compared to Apriori and SS-FIM. Hash 
table is adopted to store the candidates that are generated in 
each partition unless it is not violated partition heuristic.  

Theoretical and experimental results say that PSS-FIM 
performance is better than other approaches for large and 
dense databases. Results motivated us to look at the more 
heuristics so that performance can be improved and we plan to 
extend PSS-FIM to determine maximal and closed itemsets. 
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