
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August, 2019

4917

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F9237088619/2019©BEIESP
DOI: 10.35940/ijeat.F9237.088619
Journal Website: www.ijeat.org


Abstract: Frequent Itemset mining (FIM) concept and

limitations are explored in this paper, for the purpose of
extracting unknown hidden patterns as itemsets from the
transactional database. Since candidate generation and support
calculations are the major tasks in FIM, the major limitations of
FIM are tackled, (i) huge possible frequent itemsets are generated
as candidates at each pass (ii) Data base scan at each pass to
calculate the support of the generated itemsets (iii) generated
itemsets are highly sensitive to the minimum support threshold.
SS-FIM a single scan algorithm is to deal with the above
limitations. However, several unnecessary itemsets are being
hashed in the buckets. To overcome the limitations, a partition
based approach is proposed in this paper. The proposed approach,
PSSFIM, takes single scan of the database to identify frequent
itemsets. The unique feature of PSSFIM allow to generate size of
candidate itemsets independent on the minimum support. It
allows the candidates in hash that are possible for frequent, which
intuitively reduces the cost in terms of verifying the support of
generated candidates. It is compared with SS-FIM and Apriori
with the standard datasets. The results show that the PSSFIM is
good at the comparison of SS-FIM and Apriori.

Keywords : Apriori, Frequent Itemsets, Run time, Support.

I. INTRODUCTION

Frequent Itemset Mining (FIM) is a popular data mining
technique in extracting hidden and important itemsets from a
given database. Let TDB be a Transactional Data Base
recorded with a set of tuples [1] {T1, T2, T3, …., Tm}, each

transaction is recorded with a set of distinct {I1, I2, I3, ….,

In}. An itemset Y is set of items where Y≤I. The support

count of an itemset is computed as the occurrence of itemset Y
in the transactions. And the actual support is from its
occurrence and total number of transactions in the database.
An itemset Y is frequent if its support is higher or equal than
the given user threshold value. So, the aim of FIM is to derive
frequent itemsets from the TDB.

Investigation of FIM is started with two categories of
approaches. In the first category, they generate all possible
itemsets length K at K-levels and then test their occurrence in

Revised Manuscript Received on October 30, 2019.

* Correspondence Author
 U. Mohan Srinivas*, Research Scholar, Department of Computer

Science & Engineering, Acharya Nagarjuna University, College of
Engineering, Guntur, India.

E. Srinivasa Reddy, Department of Computer Science & Engineering,
Acharya Nagarjuna University, College of Engineering, Guntur, India.

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

the TDB to determine frequent itemsets. They use Apriori
heuristic [1] to reduce unnecessary candidate itemsets. The
second category approaches relies on FP Growth heuristic
[2]. They maintain compressed tree format of TDB in main
memory. And visit in recursive manner to find frequent
itemsets. Although this category avoids candidate generation,
these approaches consumes more memory when dealing with
large databases with less minimum support.

Several approaches have been carried out for deriving
frequent itemsets on the basis of the above two approaches.
Although they are effective in less candidate generation and
passes over the database. They consume more storage space
and execution time in-terms. Hence it is motivated researchers
to propose single scan approaches for deriving frequent
itemsets.

One of the approaches is SS-FIM proposed by Youcef et al.
[17]. They generate all the candidates for each transaction and
then stores them into hash table to maintain support of each
itemset. While generating each itemset, they check itemset
presence in the hash, then inserts into hash if it is not already
stored in the hash table. Otherwise it increments the support of
itemset. After the candidate generation, itemsets hash table
are examined to decide frequent itemsets. Although it is single
scan, it consumes huge storage space when the transaction
length is high.

This paper propose a Novel approach called Partition
Based Single Scan Approach (PSS-FIM) for mining frequent
itemsets. It is aimed at the improvement of SS-FIM with lesser
number of candidates. Here, initially, all the transactions are
divided into equal partitions. Candidate itemsets are
generated from each transaction and maintained in hash table,
if it is already not hashed, otherwise counter incremented by
one.

When half of the partitions are visited, the candidates are
tested before storing them into the hash table. At the end, the
cumulated support count of each itemset in the hash table is
considered to determine frequent itemsets. The contribution
of PSS-FIM is to avoid unnecessary candidate itemsets which
are going to be infrequent. The PSS-FIM approach has been
investigated on various datasets against the Apriori, SS-FIM
in result section. The results show that PSS-FIM outperforms
other approaches when the minimum support is low.

The organization of the paper is presented as follows. The
very next section reviews the FIM algorithms. In the next
section, Apriori and SS-FIM are presented and followed by
PSS-FIM algorithm. The result analysis of the PSS-FIM is
presented in next section. Conclusion is presented in end
section.

Partition based Single Scan Method for Mining
Frequent Item Sets

U. Mohan Srinivas, E. Srinivasa Reddy

https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.F9237.088619&domain=www.ijeat.org

Partition based Single Scan Method for Mining Frequent Itemsets

4918

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F9237088619/2019©BEIESP
DOI: 10.35940/ijeat.F9237.088619
Journal Website: www.ijeat.org

II. RELATED WORK

Frequent Itemset Mining is one of the traditional data
mining technique. One of the reasons for FIM is to derive
hidden correlation between itemsets in a strategic manner to
avoid the difficulties of candidate generate and test strategy,
where all the candidates are generated and then tested. To
overcome these issues, level-wise candidate generates and
test approach is proposed, where candidates are generated and
tested at level wise (K-size) and k-length candidate itemsets
are generated from (k-1) size frequent itemsets. Hence some
of the unnecessary computation is not done. However, too
many candidates are needed to test with many passes.

In line to the above issues Agrawal et al. [1] proposed
Apriori concept which is a level wise candidate generate and
test approach. It follows the property stating that if any
subsets of frequent itemsets must be frequent. Hence the
candidate itemsets are not considered whose subsets are not
frequent. In addition to that one more property is included,
Anti-monotonic property states that an itemset is not frequent
then all of its supersets are not frequent. Though the above
properties effective in-terms of unnecessary candidates, it is
not efficient in-terms of passes. Many techniques are based on
Apriori.

Table 1 shows the transaction database, which is recorded
with 8 transactions and items {a, b, c, d, and e}. Illustration of
Apriori is presented in Figure 1, where the list of candidates
itemsets and frequent itemsets are visualized at various levels
with respect to the minimum support threshold 50%
(count=4).

Candidate itemset length 1 is tested against the TDB to
cumulative the support to compare with the minimum support
and it is visualized in Figure 1. And also, candidate length-2
and 3 are generated from frequent length-1 and length-2 by
joining C1 with C1 and C2 with C2 when they share common
k-1 length. Since no possibility of C3 candidates, it is
terminated. After the step, frequent itemsets, when minimum

support is 4 = {{a}, {b}, {c}, {a b}, {b c}}.
Table 1: Illustration of Transactional Database

TID Purchased Items

1 a,b,e
2 b,d
3 b,c
4 a,b,d
5 b,c
6 a,c
7 a,b,c,e
8 a,b,c

Limitations of Apriori is motivated researchers to enhance

the approach, which are (a) too many data base scans (b) too
many candidates when the minimum threshold is low. One of
the approaches is DIC (Dynamic Itemset Counting) proposed
by Brinet et al. [3]. Here, TDB is divided into equal parts,
classified them as strong, suspected small and large in first
partition. In subsequent partitions to validate candidate
itemsets and pushed into the candidate itemsets from
suspected to large. Though it is efficient it is suitable when the
TDB is fitting into the main memory.

Zaki et al. proposed variation of FIM is Eclat [5]. The
database is represented as vertical list of transactions tidlist. It
is based on disjoint equivalence classes, where itemsets are
categorized into subsets based on its common k-1 prefixes.
Next level candidate itemsets K-lenght are generated from its
previous length (k-1) equivalence classes. The support of
candidate itemsets are determined from the intersection of
tidlist. And also proposed [6] another approach which is a
variant of Eclat. It was able to derive regular patterns.
Another variation of Apriori is proposed by Muller et al. [4].
It is a tree kind of approach which is depends on prefix
structure. Thus allows faster performance. However, this kind
of structure usually requires large space for both candidates
and frequent itemsets.

Figure 1: Apriori Illustration of Table 1

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August, 2019

4919

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F9237088619/2019©BEIESP
DOI: 10.35940/ijeat.F9237.088619
Journal Website: www.ijeat.org

To avoid the limitations of Apriori based approaches,
FP-Growth kind of approaches are proposed, where the
database is represented in compressed tree FP. It is composed
into phases. The first phase- FP Tree construction, where each
transaction is inserted as a path. The second phase, frequent
itemsets identification- frequent itemsets are derived by
visiting each node in a recursive manner. Due to the structure,
they are fast in response. However, it is limited to the small
database. To improve FP-growth, Cerf et al. [8] proposed
NFPgrowth algorithm. Frequent patterns are maintained in
independent table to speed up mining process. To handle
uncertain databases, modified FP-growth [7] was proposed.
In further reducing the tree traversing time, variant FP array
techniques [9,10] were proposed. It was extended to derive
maximal, closed and categorical itemsets.

The above approaches show their abilities when the input
database size is moderate. They need to alter for the large
databases whose size starts from millions [11]. The result of
the above investigation, to reduce the database competency,
bio inspired approaches BSO-ARM [12], PeARM [14], and
PGARM [13] proposed. However, they are not suitable for
FI’s extensions.

To overcome the difficulties of FIM, Youcef et al. [17]
proposed SS-FIM (Single Scan Frequent Itemset Mining)
approach, where all the possible itemsets are considered as
candidates that are obtained from each transaction and stored
in hash table. For a new itemset, if an instance is in table, then
its counter is incremented. Otherwise a new entry is created
with count one. At the end, counts of all entries are compared
against minimum support and determines a frequent itemsets.
The above procedure is done with a only one scan on the
given database. However, too many candidates are generated

when the minimum support is low and dense databases.
SS-FIM approach is illustrated for the table 1 is presented in
Figure 2.

Limitations: Similar to Apriori, it is very sensitive to
minimum support. It generates huge itemsets when it is
varying from high to low.

III. PARTITION BASED SINGLE SCAN FREQUENT

ITEMSET MINING (PSS-FIM)

This section discusses the proposed approach PSS-FIM,
which is an extension of SS-FIM. Then theoretical analysis
and result analysis w.r.t Apriori and SS-FIM.

The purpose of PSS-FIM is to reduce search space size
while visiting transactions. It relies on the divide and mine
approach, divide the transactions into equal partitions M
where |M| is (minsup*|TDB|/2), and generates all the
candidates for each transaction. It increments the support of
itemset in hash table, If it is already indexed. Otherwise, it
creates a new entry with the itemset name in hash table
initializes counter value with one. This process is repeated for
all the partitions. One of the goal is to avoid the itemsets
which are not going to become frequent. After visiting half of
the partitions, if I is newly generated itemset and not indexed
in the hash table then it is discarded, because of the partition
concept, it is not going to be frequent. Such kind of itemsets
are not stored in hash table. Hence the computation for such
kind of unnecessary itemsets is achieved with no information
loss.

Figure 2: SS-FIM illustration of Table 1

Partition based Single Scan Method for Mining Frequent Itemsets

4920

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F9237088619/2019©BEIESP
DOI: 10.35940/ijeat.F9237.088619
Journal Website: www.ijeat.org

PSS-FIM algorithm is complete, because it derives FI’s

directly from the candidate itemsets which are generated
directly from the given TDB, whose support is ≥minsup. After

visiting minsup of TDB, if the newly generated itemset is not

indexed in the hash table, there is no chance of getting the
frequency of minsup. Hence it is complete. Algorithm 1
describes the step by step activities of PSS-FIM.

Algorithm 1: PSS-FIM Algorithm

PSS-FIM takes transactional database TDB as input, and

minsup given by the user. It divides TDB into M partitions
which are equally size shown as first statement. Size of each
partition is the half of minsup of TDB. Also uses data
structure hash table to maintain the candidate itemsets along
with support value as occurrence in step 8 and 9. After visiting
half of the partitions, the generated itemset is new to the hash
table then it is discarded in step 9. At the end, it returns all the
itemsets whose support value is ≥ minsup.

 First, set of possible itemsets C is generated from each
transaction Ti. For instance, consider transaction T1 {a,b,c},
then C={ { a }, { b}, {e}, {a b}, {ae}, {be}, {abe}}. After
that, each itemset I ∈ C is stored in hash table h. Initially, h is
empty, then itemsets are stored with count value 1, where
index name is same as item name. After visiting all the
transactions, supports of all the keys are compared with
minsup to determine frequent itemsets.

Illustration: Figure 3 shows the pictorial representation of
PSS-FIM over TDB of Table 1 for minsup=50% (0.5 or 4). It
starts by partitioning TDB into 4 partitions. And then it starts
by reading the transaction T1 {a, b, e} and extracts the
possible itemsets are {a}, {b}, {e}, {ab}, {ae}, {be} and
{abe}. The hash table h is empty, then all these itemsets are
stored into the h and support is initialized to 1. It continues till
the half of the partitions are visited, and then for new itemsets,
if it is not indexed in h, then itemsets are discarded. For
example, T6 of P3 is {a, c}, then C= {a, c, ac}. Since the
availability of {a} and {c}, its counts are cumulated by 1.
Itemset {ac} is discarded, since no entry is in h and not
possible to become frequent.

Theoretical Analysis: Time complexity of PSS-FIM is
determined from the cost of (i) Possible Itemset generation
(ii) Frequent Itemset identification. The cost for candidate
generation of each transaction Ti is -1, and for TDB is

, where N is |TDB|. Partition heuristic of

PSS-FIM discards some itemsets which are not frequent,
denoted as IX. Hence it is the complexity

of possible itemset generation is
, -- (1)

Where p is possible items (maximum) for each transaction.
The second one, to find FI’s, hash table need to look at each

index for compute support, then operation is .
The total running cost of PSS-FIM is

, -- (2)
Whereas the Apriori complexity is), and
SS-FIM is

 -- (3)
Although Equation 1 and 3 has exponential form, while
equation 1 is polynomial, 1 and 3 yields lower values
compared to 2 for most TDB’s, because p is usually lesser

than N. Equation 1 outperforms Equation 3, because of IX.

IV. RESULT ANALYSIS

To present the performance details of PS-FIM, experiments
are conducted on datasets [16] on the system with the
configuration of 4GB RAM and Intel P3.

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August, 2019

4921

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F9237088619/2019©BEIESP
DOI: 10.35940/ijeat.F9237.088619
Journal Website: www.ijeat.org

One of the dataset is Bolts, It is represented with 2178
transactions. Each transaction is comprised of items 8-16.
Other dataset where size is medium, comprised with
transactions of 59000-100000. And each one is comprised of

items 500-16000 with on average 2-10. The other kind of
dataset is large database BMS POS. It has used 1660 items on
average 2.5 in 500000 transactions.

Figure 3: PSS-FIM illustration of Table 1

Table 2 is recorded with runtime comparison of PSS-FIM,
SS-FIM and Apriori. It says that Apriori has better
performance than SS-FIM and PSS-FIM. However, PSS-FIM
exhibits double performance than others when the datasets are
large and medium. Table 2 is reported that PSS-FIM shows

good performance for dense databases.
Experimental result on BMS-POS dataset is presented in

Figure 4. It shows that PSS-FIM takes less execution time
compared to the other approaches while minsup decreases.

Table 2. Execution Time of PSS-FIM, SS-FIM and Apriori

Dataset Apriori-Maximal SS-FIM
PSS-FI

M

Bolts 4 140 110

Sleep 6 110 80

Pollution 20 821 641

Basket ball 15 18 17

Quake 29 50 45

BMS-WbView-1 1002 45 34

BMS-WbView-2 3985 80 65

retail 4895 525 400

Connect 2600 1285 1021

BMS POS 9825 500 411

Figure 4: Runtime (sec) of PSS-FIM, SS-FIM and Apriori w.r.t minsup for BMS POS

Partition based Single Scan Method for Mining Frequent Itemsets

4922

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F9237088619/2019©BEIESP
DOI: 10.35940/ijeat.F9237.088619
Journal Website: www.ijeat.org

V. CONCLUSION

This paper has proposed an intelligent FIM algorithm. It
consumes less candidate itemsets and one scan to extract all
frequent itemsets compared to Apriori and SS-FIM. Hash
table is adopted to store the candidates that are generated in
each partition unless it is not violated partition heuristic.

Theoretical and experimental results say that PSS-FIM
performance is better than other approaches for large and
dense databases. Results motivated us to look at the more
heuristics so that performance can be improved and we plan to
extend PSS-FIM to determine maximal and closed itemsets.

REFERENCES

1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules
between sets of items in large databases. In proceedings of the ACM
SIGMOD Record, vol. 22, no. 2, pp. 207–216. ACM, June 1993

2. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate
generation. In: ACM SIGMOD Record, vol. 29, no. 2, pp. 1–12. ACM,
May 2000

3. Brin, S., Motwani, R., Ullman, J.D., Tsur, S.: Dynamic itemset
counting and implication rules for market basket data. In: ACM
SIGMOD Record, vol. 26, no. 2, pp. 255–264. ACM, June 1997

4. Mueller, A.: Fast sequential and parallel algorithms for association rule
mining: a comparison. Technical report CS-TR-3515, University of
Maryland, College Park, August 1995.

5. Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms for
fast discovery of association rules. In: Third International Conference
Knowledge Discovery and Data Mining (1997).

6. Amphawan, K., Lenca, P., Surarerks, A.: Efficient mining top-k
regular-frequent itemset using compressed tidsets. In: Cao, L., Huang,
J.Z., Bailey, J., Koh, Y.S., Luo, J. (eds.) PAKDD 2011. LNCS (LNAI),
vol. 7104, pp. 124–135. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-28320-8 11.

7. Leung, C.K.-S., Mateo, M.A.F., Brajczuk, D.A.: A tree-based
approach for frequent pattern mining from uncertain data. In
Proc.PAKDD 2008. pp. 653–661. doi:10.1007/978-3-540-68125-0
61.

8. Cerf, L., Besson, J., Robardet, C., Boulicaut, J.F.: Closed patterns meet
n-ary relations. ACM Transactions on Knowledge Discovery Data
(TKDD), vol. 3 issue 1, Mar 2009.

9. Grahne, G., Zhu, J.: Fast algorithms for frequent itemset mining using
FP-trees. IEEE Transactions on Knowledge and Data Engineering.
Vol.17-issue 10, pp. 1347–1362, 2005. Doi: 10.1109/TKDE.2005.166

10. Borgelt, C.: Frequent item set mining. Wiley Interdisc. Rev.: Data
Mining and Knowledge Discovery. 2(6), 437–456 (2012).

11. Djenouri, Y., Bendjoudi, A., Mehdi, M., Nouali-Taboudjemat, N.,
Habbas, Z.: GPU-based bees swarm optimization for association rules
mining. The Journal of Supercomputing. 71(4), 1318–1344 (2015).

12. Djenouri, Y., Drias, H., Habbas, Z.: Bees swarm optimisation using
multiple strategies for association rule mining. International Journal of
Bio-Inspired Computation. Vol. 6, issue 4, pp. 239–249, sep-2014.

13. Gheraibia, Y., Moussaoui, A., Djenouri, Y., Kabir, S., Yin, P.Y.:
Penguins search optimisation algorithm for association rules mining.
Journal of Computing and Information Technology. Vol.24, issue 2,
pp.165–179, 2016. doi: 10.20532/cit.2016.1002745

14. Luna, J.M., Pechenizkiy, M., Ventura, S.: Mining exceptional
relationships with grammar-guided genetic programming. Knowledge
and Information Systems. Vol. 47, issue 3, pp.571–594, 2016.

15. Hegland, M.: The Apriori Algorithm – A Tutorial. Mathematics and
Computation in Imaging Science and Information Processing. Vol. 11,
pp.209–262.2005. Doi:https://doi.org/10.1142/9789812709066_0006

16. Guvenir, H.A., Uysal, I.: Bilkent University function approximation
repository (2000). http://funapp.cs.bilkent.edu.tr/DataSets.

17. Youcef D, Marco C, Djamel: SS-FIM: single scan for frequent itemsets
mining in transactional databases. Pacific-Asia Conference on
Knowledge Discovery and Data Mining, part II, LNAI 10235, pp.
644-654, 2017.

AUTHORS PROFILE

U. Mohan Srinivas received the B.Tech. Engineering
Degree from Acharya Nagarjuna University, Guntur,
India in 1991, M.Tech. in Computer Science and
Engineering from Jawaharlal Nehru Technological
University, Kakinada, India in 2004. He is pursuing
Ph.D. from CSE Dept., ANUCET at Acharya
Nagarjuna University under the guidance of Prof. E.

Sreenivas Reddy. He is a member of CSI and IAENG. His research interests
include Data Mining, Artificial Intelligence and Pattern recognition.

E. Sreenivas Reddy got B.Tech (ECE) Degree from
ANU, Guntur, India in 1988, M.S. Degree from BITS,
India in 1997, M.Tech (CS) from Visveswaraiah
Technological University, India in 2000 and Ph.D in
Computer Science from Acharya Nagarjuna Univeristy,

India in 2008. Currently he is guiding many scholars
pursuing Ph.D. from different universities. He is the senior member of IEEE
and presented many papers in international conferences and published
papers in several national and international journals. His research interest
includes Data Mining, Image Processing, Biometrics and Pattern
recognition.

