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Abstract: This paper presents the design and application of a 

robust controller by Linear-Quadratic-Gaussian method with 

Loop-Transfer-Recovery (LQG \LTR) at the same time to 

carefully attain performance and robustness objectives. To 

improve Stability, the robust controller has been shown to 

provide good performance i n  normal operations conditions. 

Objectives cannot be suitable unless  the controller can 

perpetuate such quality in the presence of plant uncertainties or 

any working conditions in the hydroelectric power plants. The 

approach is based to synthesizing a robust controller minimizing a 

quadratic criterion (controller LQG) while using the Loop 

Transfer Recovery (LTR), to restore robustness properties of the 

Estimator. In this study, we applied this robust control law on the 

model of a Francis hydro turbine. Computer simulations are 

carried out to establish a n d  compare the performance and 

robustness of using the Infinite horizon control ( H ), internal 

model control (IMC), Proportional Integral Derived (PID) and 

LQG/LTR controllers. 

 

Keywords : Francis hydro Turbine, speed, LQG/LTR, 

parametric disturbance hydro- power plant. 

I. INTRODUCTION 

The robust control of the dynamic systems plays a 

significant role in the correct operation of the machines and 

the industrial processes. Many complex engineering systems 

are equipped with several actuators that may influence their 

static and dynamic behavior.  The complexity of these 

systems and the requirements of performance increasingly 

more strict result in the guaranteeing need for methods of 

control of the performances raised with a robustness against 

the risks and unforeseen of the environment. The criteria of 

stability, robustness and performance are the objectives to be 

reconciled for any method of effective control. Among the 

most answered techniques of robust control, [1], [2] outline 

the solution to a range of   optimal control problems. Further 

algorithms such as loop transfer recovery LTR were 

developed by [3] to improve the robustness of the more 
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practical LQG when compared to the more robust but less 

practical LQR. 

Since the appearance of the paper by [3] with loop transfer 

recovery (LTR), many papers have been written on this topic. 

The most notable ones for continuous time systems are [1], 

[4], [5] to achieve H2 and H∞ norm specifications [1], [6].   

In this paper, synthesizing a control l aw by        

Linear-Quadratic-Gaussian   method with loop-Transfert 

-Recovery (LQG \LTR) which maintains system response 

and error signals to within specified tolerances so  that they 

are enable to ensure the robustness and performances for the 

modes of nominal and disturbed operation. In this context, 

we applied in simulation this controller to the system (model 

of hydro turbine of the hydroelectric power plant of 

Songloulou) [6]-[8]. 

This paper is organized as follows: We present in section 2 

the process model on which we worked; section3 describe the 

Synthesis of a robust controller by approach LQG \LTR. The 

results obtained from simulation are given and analyzed in 

time and frequency domain in section 4, the obtained results 

are compared with the controllers PID, IMC and H
. 

Finally, section 5 resumes the main conclusions obtained 

during the development of this work. 

II. PROCEDURE FOR PAPER SUBMISSION 

MODELING OF THE PLANT 

   For the realization of our project, we have used the model 

of the Songloulou hydroelectric power plant. The System 

modeling is presented in [7], [8]. The process is carried out 

by association of 4 modules:  the Francis hydro turbine, the 

alternator, the servo-motor-servo valve and power chain, 

figure 1.   

 

Fig. 1. Schematic representation of the hydro turbine 

driving a synchronous generator in hydro power 

plants. 

A. Modeling of the Francis turbine model 

    The reduced Bond graph representation of a Francis hydro 

turbine shown in Figure 2 [7]. 

 

Design of a Robust Controller by LQG/LTR 

Formalism for Francis hydro Turbine Driving a 

Synchronous Generator  

Yeremou Tamtsia Aurélien, Nneme Nneme Léandre, Samba Aimé Hervé 

mailto:leandren@gmail.com


 

Design of a Robust Controller by LQG/LTR Formalism for Francis hydro Turbine Driving a Synchronous 

Generator  

855 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: A9392109119/2019©BEIESP 

DOI: 10.35940/ijeat.A9392.109119 

 

Fig. 2. Bond Graph of the hydro Francis turbine. 

Table-1 present the most parameters of the  Francis hydro 

turbine. 

Table- I: Parameters of the  Francis hydro turbine. 

Parameters Value Unit 

Density of the driving fluid 1000 Kg/m3 

Wheel beam at the side of the 

turbine 

2.25 m 

Wheel beam at the entry of the 

turbine 

3.2 m 

Inertia of turbine 8800000 Kg.m2 

Entry flow rate 18.9544 m3/s 

The transfer function of the hydro  turbine is given by  [7]:   

                             
42.55s1

0.663
(s)GT


                                     (1) 

Study and modeling of the servo valve, the power chain and 

the relationship between winnowing (v) and the water flow 

rate (d) is reported by [7]. Figure 3 present the open loop 

Simulink model of the hydro turbine’s speed control chain of 

the hydroelectric power plant. 

 

 

Fig. 3. Simulink model of the open loop hydro power 

plant. 

Table-2  present the most parameters of the  hydroelectric 

plant. 

 

Table- II: Parameters of the hydroelectric plant. 

Parameters Description Unit 

Q Water flow rate m
3
/s 

Hb Height of waterfall m 

Pr Power of the load  Watts 

Tr Resistant torque N.m 

Pm Power produced Watts 

Tm Motor torque Nm 

mesω  Speed measured rad/s 

dω  Disturbance  

III. SYSTEM IDENTIFICATION  

From the response curve seen in figure 4, the system is 

approximately a first order system. Using Broïda parameters, 

the system response time (T) and time constant is calculated 

following the formulas given below [9]: 

         
21 1.8t2.8tT    ,   )t5.5(tτ 12    (2) 

With K=12.57, T=42.84s    and  τ=0.538s  ,the transfer 

function of the nominal regime of the Broïda model of the 

system is given by:  

                             0.538se
42.84s1

12.57
G(s) 


     (3) 

The first order PADE approximation of the model with time 

delays is given by:  

                             
717.33.16042.84s

46.7312.57s-
G(s)

2 




s
    (4) 

The simulation results are represented in figure 4. 

 

 

Fig. 4. Index responses of open-loop system and model 

responses. 

IV. METHOD OF SYNTHESIS OF A ROBUST 

CONTROLLER BY LQG/LTR APPROACH 

  Consider the stochastic dynamic system of state equations: 

      









vCxy

ΓwBuAxx
                                                     (5)       

                                   

Where  A, B, C are state space matrices of the plant and     is 

the disturbance,  the noise of state w and the measurement 

noises v are assumed Gaussian noises with zero mean and 

covariance matrices W and V as follows: 

 

          0WwwE T   ,           0VvvE T                      (6) 

 

 

                             

  0wvE T                                           
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(7) 

The problem is then to devise a feedback control low which 

minimizes   the performance index: 

          








 

T

0

TT

T
dtRuuQzz

T

1
imlEJ                             (8) 

Where z is a linear combination of the system states, Q and R  

are weighting matrices.  

The mathematical criterion that one seeks to minimize is  

[10] :  

            
G

K
Jmin

f

  with            0εεEJ x

T

xG                        (9) 

Where 
xε is the error in estimation of the state of the system 

in permanent mode. 

From the equations (5) and (9), we deduce the equation from 

evolution of the error in estimation:   

 

                   vCεKwAεε xfxx                             (10) 

                           

                 









v

w
KIεCK-Aε fnxfx

                     (11) 

By applying the theorem of the passage of a white noise in a 

linear system to the equation (10) and (11)   we obtain the 

equation (12) of continuous LYAPUNOV [3], [11]: 

 

          0VKKWCKAPPCKA T

ff

T

ffff         

(12) 

                       

Where Kalman-filter static gain 
fK   of the optimal observer 

is as follows: 

                                    1T

ff VCPK                                     (13) 

               

Where  
fP  obeys the algebraic Riccati equation. 

                       0WCPVCPAPAP f

1T

ff

T

f           (14) 

With  0PP T

ff        

The   optimal control is given by: (t)x̂Ku(t) c     

Where 
CK  is an optimal static feedback   gain obtained by 

considering the LQR problem: 

    

                                     PBRK T1

c

                                    (15) 

where P is the unique positive definite solution of the Riccati 

continuous algebraic equation. 

 

                0QPBPBRPAPA T1T                         (16) 

      

 

Fig. 5. Functional diagram of Kalman filter. 

According to Figure 5, the representation of state of controller 

LQG is written:   

             






























y

x̂

0K

KCKBKA

u

x̂ fcc


                      (17) 

We deduce from the equation of state (17), the transfer matrix 

of the controller :    

              f

1

fcc KCKBKAsIKK(s)


                (18)          

A. Loop Transfer Recovery and Choice of the weighting 

matrices  

   Approach LQG/LTR consists with calculated the 

KALMAN filter by a suitable choice of the matrices of 

variance   noise  T TE ww =W=ΓΓ and  TE vv =V=ρI by 

taking of account properties of dual robustness for the choice 

of the parameters   Γ  and ρ . 

    Where  n×p
Γ R  is the process noise distribution matrix 

and ρ  is a scaled value; then in calculation, the command by 

return of state (command LQ) starting from an adjustment of 

the matrices of weighting Q and R so that the matrix of 

transfer of the open loop of the unit approaches gradually that 

obtained by the KALMAN filter. 

A first stage of synthesis LQG/LTR relates to the choice of 

weighting matrices Q and R for the calculation of the 

command with return of state LQ in the following way [1], 

[4] :  

 

                         TΓΓQ  and ρIR                               (19) 

B. Robustness Condition on the Performances in low 

Frequency (LF) and Robustness Condition on the 

Performances in High Frequency (HF)  

The robustness condition on the performances is given by: 

 

      
     jωWσρ/ΓjωCΦσ pmaxmin 

  
                    (20) 

Where     1
AsIjωΦ


  

The transfer   matrix and   sWσ pmax   
  the largest singular 

value of specification on stability. 

For the robustness on stability it is thus necessary, to ensure 

the following condition [1], [3]:   

   ρ/ΓjωCΦσω maxmax c                 (21) 

Where 
c maxω is the cut-off frequency of the reverse of the 

singular values of the specification on stability 

  (s)W1/σ pmax
. 

    
Asymptotic Covering  

The adjustment is done by a choice of the matrices form [3]:   

                   Cq.CQQ T

0     and   
0RR                        (22) 

From equation (27), we can rewrite the theorem of the dual 

LTR in the following way [3], [5]:   
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f
q

KCK(s)G(s)lim 


                         (23) 

Figure 6 shows the  configuration of a perturbed closed-loop 

system.                                                                                           

 Where  u is the commande, y is the process output , ε is the 

loop’s error, G(s) is stamp transfer matrix of the system, K(s) 

is the transfer matrix  of the controller and (s)  is the process 

uncertainty at the process output. 

The maximum singular value of Δ(s) is given by (24): 

 

 
 

   
max

1

max

σ Δ(s)

σ I Δ(s) .G(s) -G(s) G (s)



  

                         (24) 

              

 

Fig. 6. Feedback configuration of a closed-loop system 

subjected to multiplicative disturbances. 

C. Robust Stability and Robust Performances 

The conditions of robustness on stability and the 

performances corresponding to the parametric disturbance 

(s)   are :  

               
                         (s)W1/σT(s)σ tmaxmax                           (25) 

                       (s)W1/σS(s)σ pmaxmax                             (26) 

Where T(s) is the nominal closed loop transfer matrix and   

S(s) is the sensitivity matrix given by [12], [13]: 

               
                 1

K(s)G(s)1K(s)G(s).T(s)


                          (27) 

 

                        1
K(s).G(s)1S(s)


                                    (28) 

 

The stability specification matrix Wt(s) is defined by: 

 

                        (s)Wσ(s)σ tmaxmmax                           (29) 

V. DESIGN OF LQG/LTR CONTROLLER FOR 

FRANCIS HYDRO TURBINE 

A. Choice of the specifications on stability and the 

performances weighting matrices  

On the basis of the criteria previously established, the stability 

specification Wt(s) and the performance specification Wp (s) 

are represented as follow: 

  Stability specification. 

                       0.03s10.9(s)Wt                                     (30) 

 Performance specification. 

 

                             
0.1s

0.1s1
(s)Wp


                                    (31) 

The frequential gauge of the specifications is represented on 

figure 7 and figure 8. 

 

 

Fig. 7. Maximum singular value of Wt(s). 

 

Fig. 8. Maximum singular value of Wp(s). 

B. Robustness conditions 

The robustness conditions for the speed hydro turbine are 

represented in figure 9. 

 

Fig. 9. Robustness conditions. 

C. Performances condition in high frequency (HF)   

To guarantee this condition it is necessary to ensure the 

condition of robustness on stability in HF: 

 

Fig. 10. Robustness condition on the performances in 

high frequency. 

 

D. Performances condition in low frequency (HF)   
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Fig. 11. Robustness condition on the performances in 

low frequency. 

Figures (10) and (11) famous determination of    and ρ, by 

test-error starting from the preceding conditions of 

robustness is done.  One obtains thus Γ=[1;0]  and 

ρ=0.000015 . 

E. Loop transfer recovery  

 
Fig. 12. The recovery of the loop gain for q=0. 

 
Fig. 13. The recovery of the loop gain for q=109. 

According to figures 12 and 13, one observes that the 

principal gains of K(s).G(s)L(s)  tends towards the 

principal gains of optimal observer  

  f

1

FK .KAsIC.(s)L


  with a total covering. 

 

 

Fig. 14. Principal gains, Sensibility and robustness 

conditions. 

Figure 14 showed that the robustness conditions on stability 

and the performances are satisfied: the stability is guaranteed 

if the largest singular value of closed loop transfer matrix 

function   sT1/σmax
is lower than the upper bound of the 

largest singular value of the model uncertainties 

  sW1/σ tmax
 .                                                                                                                 

The singular values of the sensitivity  maxσ S(s)  are below 

the robustness condition on performances   sWp1/σmax
 

what allows the rejection of the disturbances and guarantees 

the performances desired in the synthesis.     

The final controller is then given by 

0.02908290.85s283.6s62.51ss

8995388.4s123.1s5.184s
K(s)

234

23




                                                  

                                                                                         (32)        

Figure 15 shows the simulink model of the closed-loop of the 

power plant in the presence of the LQG/LTR controller.        

 

Fig. 15. Simulink model of the closed-loop of the power 

plant in the presence of the LQG/LTR controller. 

VI. RESULT AND DISCUSSION 

Figure.16, 17,18 and 19 shows the step responses of nominal 

of and perturbed regimes of hydro turbine plant. 

 

 

  
(a)                                                            (b) 

Fig. 16. Closed-loop time responses of the nominal plant 

G(s) with (K=12.57, T=42.84, and 0.538τ  ) . 
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(a)                                                            (b) 

Fig. 17. Closed-loop time responses of the perturbed 

plant G1(s) with (K=1.57, T=42.84, and 0.538τ  ) . 

                                                          
(a)                                         (b) 

Fig. 18. Closed-loop responses of the nominal plant 

G2(s) with (K=10.57, T=420.84, and 0.538τ  ) . 

 
(a)                                                            (b) 

Fig. 19. Closed-loop time responses of the nominal plant 

G(s) with (K=12.57, T=840.84, and 0.538τ  ) . 

 
(a)                                         (b) 

 
        (c)                                               (d) 

Fig. 20. The disturbance rejection responses of the 

nominal plant G (a), the perturbed plant G1(b), 

G2(c), and G3(d).   

 

Figure 18 shows that the LQG/LTR controller has improved 

the speed of hydro turbine where reduction of overshoot and 

oscillation are obtained.  

The stability of all regimes (figure 16, 17,18 and 19) show a 

good performance and a fast response time with LQG/LTR 

controller. It is noted that our obtained results are very 

encouraging with the PID, CMI and H∞ controllers reported 

by [6].  

Table- III: Comparison of overshoot, rise time and 

setting time according to different controllers of closed 

loop responses of the nominal plant G(s) with 

( K=12.57  , T=42.84   and τ=0.538 ). 

 

Controllers Overshoot 

(%) 

Rise time 

(s) 

4% setting 

time (s) 

PID    36.28   13.47 22 

IMC 0 77.2 12.27 

H
 12.16 3.42 8.9 

LQG/LTR 0 9.90 7.29 

 

Table- IV: Comparison of overshoot , rise time and 

setting time according to different controllers of  closed 

loop responses  of the perturbed plant G1(s) with  

( K=1.57  , T=42.84   and τ=0.538 ). 

Controllers Overshoot 

(%) 

Rise time 

(s) 

4% setting 

time (s) 

PID 31.11 31.11 69.7 

IMC 0 0 132.8 

H
 0 0 88.54 

LQG/LTR 0 0 62.5 

 

Table- V: Comparison of overshoot , rise time and 

setting time according to different controllers of  closed 

loop responses  of the perturbed plant G2(s) with  

( K=10.57  , T=420.84   and  τ=0.538 ). 

Controllers Overshoot 

(%) 

Rise time 

(s) 

4% setting 

time (s) 

PID    36.28   13.47 22 

IMC 0 77.2 12.27 

H
 12.16 3.42 8.9 

LQG/LTR 0 9.90 7.29 

 

Table- VI: Comparison of overshoot , rise time and 

setting time according to different controllers of  closed 

loop responses  of the perturbed plant G3(s) with  

( K=12.57  , T=840.84   and  τ=0.538 ). 

Controllers Overshoot 

(%) 

Rise time 

(s) 

4% setting 

time (s) 

PID      64.68    28.53        258 

IMC   27.13 66.46 227.7 

H
   23.31 53.17    187.9 

LQG/LTR  21.96 42.57 157.5 

 

 

 

Figure 20 shows that disturbance rejection due to the 

LQG/LTR controller is faster 

than the H∞, IMC and PID. 
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Table 3, Table 4, Table 5 and Table 6 shows that the 

LQG/LTR controller has eliminated the steady state error 

faster than the   PID, IMC and  H
  controllers  where 

reduction of overshoot and oscillation are obtained. Settling     

times of system characteristic component parts by using 

LQG/LTR controller are shorter, and the stability of the 

system is better by applying this optimal control method. 

VII. CONCLUSION 

 In this paper a robust controller LQG/LTR   to achieve the 

benefit of feedback in the face of uncertainties has been 

investigated and successfully applied to a hydro turbine 

driving a synchronous generator. From the simulation results, 

it is clear that, the LQG/LTR control exhibits better 

performance for rotational speed responses than the PID   and 

IMC and H
  control.  
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