
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-1, October 2019

1973

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A9526109119/2019©BEIESP

DOI: 10.35940/ijeat.A9526.109119



Abstract: Large in-memory data structures have a significant

application in the fields of graphics, gaming, military and all the

possible areas where Big Data can be employed. Their fame in the

area of science and technology is attributable to fast in-memory

access by the processor as compared to on-disk data structures.

These enormous data structures can be accessed still fast and

efficiently through parallel computing. For employing highly

parallel computations, equally parallel algorithms are required.

One of the most desirable attributes of such algorithms is their

ability to control concurrency and avoid any deadlocks while

being time and energy efficient. This paper presents a

multi-version optimistic concurrency control algorithm based on

timestamping. This algorithm is lock free and is tested on 64

simulated CPU cores on a multi core simulator. The algorithm is

a Software Transactional Memory approach employing 16, 32, 40

and 50 threads in different tests running on the simulator. Half of

the threads are doing reading and half are doing writing

operation in each case while accessing an in-memory dynamic

array. Being lock free and employing lazy timestamp calculations,

this approach is better than other existing concurrency control

approaches.

Keywords: Software Transactional Memory, Optimistic

Concurrency Control, in-memory data structures, Timestamping,

multi-version, sniper multi-core simulator, multi cores, Cycles Per

Instructions

I. INTRODUCTION

Parallelism of transactions or threads is important for

faster access of enormously large files and data structures. But

with such large parallelism, there is a necessity of effective

parallelism and concurrency control. A lot of work is being

done in this direction. Some of it covers locking mechanisms,

barriers, time stamping, optimistic and multi version

concurrency control and Transactional Memory approach.

[1] explains the basic concurrency control techniques like

locks, timestamping, optimistic and multi version

Revised Manuscript Received on October 15, 2019

* Correspondence Author

Sana Jafar*, Amity Institute of Information Technology, Amity

University Uttar Pradesh, Lucknow Campus, Lucknow(India), India. Email:

india.sana@gmail.com

Ranjana Rajnish, Amity Institute of Information Technology, Amity

University Uttar Pradesh, Lucknow Campus, Lucknow(India), India. Email:

rrajnish@lko.amity.edu

Pankaj Kumar, Department of Computer Science and Engineering, Sri

Ram Swaroop College of Engineering and Management, Lucknow, India.

Email: pk79jan@gmail.com

concurrency control. There are several famous in-memory

multi version concurrency control schemes like Hekaton[2],

Hyper[3], Bohm[4], Deuteronomy[5] and ERMIA[6].

MOCC[7], Cicada[8] are some of the recent multi-version

optimistic concurrency techniques. TicToc[9], is a multi

version optimistic and timestamp ordering scheme. Whatever

may be the technique, locks are used in some or the others

phases in order to achieve concurrency control. [10-15] shows

software transactional memory approach wherein locks are

employed in the validation phase.

It is seen that locking is the inherent technique of all the

concurrency control mechanisms. But locking has its

disadvantages. The most obvious one is that, it limits the

concurrency by allowing just one thread to enter the critical

section at a time leading to the possibility of a deadlock.

Not just the use of locks, but scalability of these techniques

with increasing number of threads or transactions is also a

matter of concern. In [15] authors have proposed a novel

software transactional memory approach for NUMA

architectures. Here, the authors have obtained throughput by

running various TM algorithms, namely, TL2[16],

SwissTM[17], TinySTM[18], RingSTM [19] and NOrec[20]

on a 64 cores AMD commercially available server but have

observed no improvement in throughput as the number of

threads increase beyond 15.

In this paper, the authors have developed a multi version

optimistic concurrency control technique based on Software

Transactional Memory approach and timestamping. This

technique is an extension of the optimistic concurrency

control technique based on Software Transactional Memory

and timestamping for in-memory data structures in multi core

systems developed by the authors of this paper[21]. The

technique possess following attributes:

1. Being lock free, it provides better concurrency among

executing threads and avoids deadlocks.

2. As it is a Software Transactional Memory approach, it

follows all the three attributes of transactions in in-memory

systems namely Atomicity, Consistency and Isolation.

3. The timestamping mechanism used here is not

centralized. Each transaction as it enters the system, gets its

own timestamp by calling a procedure. Each valid writing

transaction calculates its commit timestamp by the read

timestamp of the element in its

write set. This eliminates the

possibility of any bottlenecks

arriving due to centralized

Multi-Version-PulsatingSTM: A Multi-Version

Optimistic Concurrency Control Scheme for

Highly Parallel in-Memory Workload in a Multi

Core Environment

Sana Jafar, Ranjana Rajnish, Pankaj Kumar

Multi-Version-Pulsating STM: A Multi-Version Optimistic Concurrency Control Scheme for Highly Parallel

in-Memory Workload in a Multi Core Environment

1974

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A9526109119/2019©BEIESP

DOI: 10.35940/ijeat.A9526.109119

timestamp manager.

4. Also as the commit timestamp of each transaction is

calculated only at the time of final write operation this allows

for maximum transactions to perform write operation in their

private sets.

5. The multi version attribute of this algorithm allows

writing the multiple versions of the same element in a

dynamically growing data structure by the valid transactions

and allowing their access by other transactions.

II. MULTIVERSION-PULSATING-STM

Multi-Version-PulsatingSTM is an extension of the

PulsatingSTM algorithm[21] already developed by the

authors of this paper. It is an optimistic concurrency control

algorithm based on Software Transactional Memory

approach and timestamping. Multi-versioning and having

distinct reading and writing transactions are the extensions

employed in the algorithm where each valid writing

transaction is allowed to write a separate version of the same

element on the original data structure and a valid reading

transaction is used to read and change the read timestamp of

the element in the original data structure.

Multi-Version-PulsatingSTM has the same three phases

namely Read Phase, Validation Phase and Write Phase as the

PulsatingSTM:

A. Read Phase

The Read Phase of the algorithm has the following steps:

• Each transaction with an even ID, is a writing transaction. It

first copies an element from the data structure in its write set

and does the update there. Then it copies the same element

in its read set. Transactions with an odd ID are reading

transactions and they simply copy the elements in their read

set.

• Both type of transactions note down the read and write

timestamps of the element in their read/write sets.

• They set the pointer to the location of the element in the

original data structure.

B. Validation Phase

After all the transactions have read the elements in their

read/write sets, depending upon the operation, the validation

phase arrives. In the validation phase two major things

happen:

• It is decided using the following steps whether or not the

transaction is a valid transaction.

• For the valid writing transactions the commit timestamp is

calculated.

• For the valid reading transactions, the read timestamp of the

elements read is modified to the transaction’s timestamp.

Validation Phase has the following steps:

1. If any one of the following conditions holds, then the

transaction is not a valid transaction and it has to

rollback and abort. For such transactions commit

timestamp is not generated.

 The read timestamp and the write timestamp of the element

in the transaction’s read set are equal.

 The read timestamp and the write timestamp of the element

in the transaction’s read set are having a difference of 1

unit.

 The write timestamp is greater than the read timestamp in

the read set.

2. If none of the above conditions hold then the transaction is

a valid transaction and commit timestamp for the valid

writing transaction is computed as below in point 3.

However, if it is a valid reading transaction then the read

timestamp of the element read in its read set is set to the

timestamp of this transaction.

3. The valid writing transaction’s timestamp is compared with

the read and write timestamp of the element in its read set

and checked whether or not it is in between the write and

read timestamp of the element.

4. If the transaction’s timestamp is not in between the read and

write timestamp of the element in the read set then it is

altered to satisfy the constraint.

5. Now the commit timestamp is finally computed by making

the altered timestamp from point 4 greater than the read

timestamp of the element in the write set of the transaction.

C. Write Phase

Once the transaction is decided to be a valid writing

transaction with a commit timestamp, then its write set is

written on the original data structure. If there are multiple

valid transactions then each transaction is allowed to write a

separate version on the original data structure.

In case the valid transaction is a reading transaction, then

its read set is copied to the original data structure.

III. DESIGN ELEMENTS OF MULTI-VERSION-

PULSATINGSTM

Multi-Version-PulsatingSTM has the following design

elements:

1. A dynamic one dimensional array as global data structure to

be accessed by all the transactions.

2. Each element in the array has some metadata that is

comprised of read and write timestamp, a data value and a

pointer to the element in the original data structure. The

read timestamp is the timestamp of the valid reading

transaction that has recently read that element and write

timestamp is the commit timestamp of the valid writing

transaction that has currently updated that element. The

metadata is tabularized in [21].

3. Each writing transaction has a private read and write set.

Each reading transaction just has a private read set.

4. Whenever a transaction has to perform the read operation

on some element, it copies that element in its read set, notes

down its read and write timestamps and the data value,

makes the pointer point to the original element in the data

structure.

5. Whenever a transaction has to perform the write operation

on some element, it copies that element in its write set, does

the update or writing operation on the data value, notes

down the read and write timestamp of the element and,

makes the pointer point to the original element in the data

structure.

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-1, October 2019

1975

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A9526109119/2019©BEIESP

DOI: 10.35940/ijeat.A9526.109119

Algorithm 1 demonstrates the Transaction Begin, Read

Phase, Validation Phase and Write Phase of this algorithm.

Algorithm 1 Multi-Version-PulsatingSTM algorithm

1: procedure BeginTX

2: timestamp autoinc()

3: ID omp_get_thread_num()

4: end procedure

5: procedure ReadTX

6: if ID % 2==0 do

7: p write(tranwrite, (arr+0),0,p,timestamp)

8: s read(tranread,(arr+0),0,s,timestamp)

9: else

10: s read(tranread,(arr+0),0,s,timestamp)

11: end procedure

12: s s – 1; p p -1;

13: procedure ValidateTX

14: k 0

15: if tranread[k].rtime != tranread[k].wtime AND

tranread[k].rtime –tranread[k].wtime != 1 AND

tranread[k].wtime < tranread[k].rtime do

16: while k<s do

 17: while timestamp<=tranread[k].wtimeOR

timestamp>=tranread[k].rtime do

18: if timestamp<=tranread[k].wtime do

19: timestamp++;

20: elseif timestamp>=tranread[k].rtime do

21:timestamp--;

22: end if

23: end while

24: k k+1

25: end while

26: end if

27: k 0

28: while k<s do

29: if timestamp >tranread[k].wtime AND

timestamp<tranread[k].rtime do

30: flag 1;

31: else

32: flag 0; break;

33: end if

34: k k+1

35: end while

36: if flag == 0 do

37: Transaction has read invalid version and has to

roll back

38: for j 0, j< p do

39 if tranread[k].point==tranwrite[j].point do

40: for l j, l<p-1 do

41: tranwrite[j] tranwrite[j++];

42: l l + 1

43: end for

44: p p -1; break

45: end if

46: j j+1

47: end for

48: else do

49: Transaction has read a valid version

50: k 0

51: if p > 0 do Transaction is a writing transaction

52: while k < p do

53: if timestamp < tranwrite[k].rtime do

54: timestamp tranwrite[k].rtime

55: end if

56: k k+1

57: end while

58: if k == p do

59: timestamp timestamp +1

60: end if

61: commit timestamp is timestamp

62: else Transaction is a reading transaction

63: for k=0 , k < s do

64: tranread[k].rtime timestamp;

65: *(tranread[k].point) tranread[k];

66: k k+1

67: end for

68: end if

69: end if

70: end procedure

71: procedure WriteTX

72: for j=0 , j<p do

73: tranwrite[j].wtime timestamp

74: tranwrite[j].rtime timestamp

75: count count+1; ind count;

76: Dynamically incrementing the size of array arr by

ind

77: *(arr+(ind-1)) tranwrite[j];

78: j j+1

79: end for

80: end procedure

 Here, count and arr are global variables. count is initialized

to 1 and arr is the dynamic integer array. arr is the array in

which the transactions are trying to access the elements

concurrently for reading and writing. count is used to

maintain the count of the versions written to arr. tranwrite,

tranread, s, p, timestamp, ind, ID are the private variables

of each transaction. tranwrite and tranread are the private

write set and read set respectively of each transaction. s and p

are the size of tranread and tranwrite respectively.

timestamp is the private variable for holding unique

timestamp of each transaction. ind is the private variable that

is used to increment arr by for every new version created by a

transaction. ID is the unique number allotted to every thread

in the system.

Algorithms 2, 3 and 4 demonstrate the read() write() and

autoinc() functions respectively used in Algorithm 1.

Multi-Version-Pulsating STM: A Multi-Version Optimistic Concurrency Control Scheme for Highly Parallel

in-Memory Workload in a Multi Core Environment

1976

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A9526109119/2019©BEIESP

DOI: 10.35940/ijeat.A9526.109119

Algorithm 2 Read operation algorithm

1: procedure read (struct element *TR, struct element

*v,int i,int size, int timestamp)

2: TR[i] *v;

3: size size+1;

4: TR[i].rtime v->rtime;

5: TR[i].wtime v->wtime;

6: TR[i].point v;

7: return size;

8: end procedure

Algorithm 3 Write operation algorithm

1: procedure write (struct element *TW, struct

element *v,int i,int size, int timestamp)

2: size size+1;

3: TW[i] *v;

4: update (TW[i].data);

5: TW[i].rtime v->rtime;

6: TW[i].wtime v->wtime;

7: TW[i].point v;

8: return size;

9: end procedure

Algorithm 4 autoinc algorithm

1: procedure autoinc

2: static int c 1;

3: c c +1;

4: return c;

5: end procedure

In the algorithm 1, line number 1 to 3 is BeginTX

procedure indicating the Beginning phase of the algorithm.

During this time each parallel transaction is allotted a unique

ID and a timestamp.

Line numbers 5 to 11 is ReadTX procedure which indicates

the reading phase of the algorithm. During this phase, the

transactions with even ID are supposed to perform both

writing and reading operations by calling read() and write ()

functions respectively. However, transactions with odd ID are

supposed to perform just reading operation by calling read()

function only.

Line number 13 to 70 is ValidateTX procedure. The

validation takes place in the way explained in sub-section B of

section II above.

In number 51, while checking the value of p to be greater

than 0, it is decided whether or not the transaction has a

non-empty write set. If the write set of the transaction is

non-empty, it is decided that it is a writing transaction which

has written at least one element to its write set. However, if the

write set is empty then it can be safely decided that the

transaction is a reading transaction and therefore there is no

element in its write set.

From line number 52 to 61, the commit timestamp of the

writing transaction is calculated. From line number 63 to 66,

reading transaction updates the read timestamp of the element

in its read set to its own timestamp, and copies its readset to

the original data structure.

Line number 71 to 80 is the WriteTX procedure. The valid

writing transaction first updates the read and write timestamps

of the elements in its writeset and then writes the updated data

value as a new version in the original data structure. For this it

first dynamically increases the size of the data structure.

IV. EXPERIMENTATION AND RESULT ANALYSIS

The above algorithms are implemented in OpenMP using

C. They are tested on sniper-6.1[22] using the gainestown

configuration.

The gainestown configuration has the following settings:

• Core frequency—2.66 GHz

• Number of cores sharing L3 cache— 4

• Data access time by L3 cache – 30 cycles

• Network memory model --- bus

• Bus bandwidth – 25.6 GB/s (12.8 GB/s per direction and

per connected chip pair)

Local traffic has been ignored because the memory

controllers are on chip.

Authors have executed and tested the OpenMP C code for

Multi-Version-PulsatingSTM on 64 simulated cores

employing 16, 32, 40 and 50 threads consecutively.

The average Cycles Per Instruction (CPI) graphs obtained are

shown below in Fig. 1-4.

These graphs are plotted with time in microseconds on X-axis

versus CPI percentage on y-axis.

The spikes in the graphs are representing read phase and the

heap towards the right side is representing validation and the

write phases.

Fig. 1. Average CPI graph for the algorithm running 16

threads on 64 simulated cores

Fig. 1 shows the result of running the proposed algorithm

on 64 simulated CPU cores employing 16 threads. The read

phase is spiking up at 232 microseconds. The validation and

the write phase starts from 466 microseconds till 527

microseconds and cover around 61 microseconds of the

graph. In terms of CPI percentage, read phase occupy 25% of

CPI and validation and write phase also occupy maximum

25% CPI. The total time spend in running this algorithm is

526.4 microseconds.

Fig. 2. Average CPI graph for the algorithm running 32

threads on 64 simulated cores

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-1, October 2019

1977

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A9526109119/2019©BEIESP

DOI: 10.35940/ijeat.A9526.109119

Fig. 2 shows the result of running the proposed algorithm

on 64 simulated CPU cores employing 32 threads. The read

phase is spiking up at 232 microseconds and covers around

45% CPI. The validation and write phase also cover

maximum 45% CPI. They start from 750 microseconds till

836 microseconds and cover around 86 microseconds of the

graph. The total time occupied in running this algorithm is

836 microseconds.

Fig. 3. Average CPI graph for the algorithm running 40

threads on 64 simulated cores

Fig. 3 shows the result of running the proposed algorithm on

64 simulated CPU cores employing 40 threads. The read

phase is spiking up at 232 microseconds and occupies 50%

CPI. The validation and write phase starts at 875

microseconds and stretch upto 990 microseconds, covering

115 microseconds. Also the maximum CPI percentage of

these two phases is 62%. The total time taken in running this

algorithm is 989.7 microseconds.

Fig. 4. Average CPI graph for the algorithm running 50

threads on 64 simulated cores

Fig. 4 shows the result of running the proposed algorithm

on 64 simulated cores employing 50 threads. The total time

taken by this algorithm is 1.178 milliseconds. The read phase

spikes up at 240 microseconds and consumes 72% CPI. The

validation and write phase starts at 1.048 milliseconds and

stretches up to 1.178 milliseconds. These two phases consume

maximum of 79% CPI.

Metrics observed after running the proposed algorithm on

increasing number of threads are tabulated below:

Table-I: Parametric values from sniper for running

Multi-Version-PulsatingSTM employing different

number of threads on 64 cores

Threads

 16 32 40 50

Instructions 3.704

m

12.94

m

20.06

m

29.84

m

IPC 0.042 0.091 0.119 0.149

Cycles 1.408

 m

2.224

m

2.633

m

3.133

m

Time 526.4

μs

836

μs

989.7

μs

1.178

ms

Branch

MPKI

2.058 1.337 0.993 0.781

L1-I MPKI 1.502 0.799 0.631 0.519

L1- D MPKI 1.920 0.915 0.692 0.553

L2 MPKI 3.159 1.625 1.264 1.032

DRAM

APKI

1.366 0.614 0.468 0.378

IPC: Instructions Per Cycle, MPKI: Misses Per Kilo Instructions,

L1-I: Instruction level L1 Cache, L1-D: Data level L1 Cache, L2: L2

cache, DRAM: Dynamic Random Access Memory, APKI: Access

Per Kilo Instructions

From the Table 1, it is clear that as the number of threads is

increasing, the cache misses are reducing as well as the

DRAM access per kilo instructions is also reducing thus

giving enhanced throughput. Similar observation is made by

running PulsatingSTM on 64 simulated CPU cores employing

16, 32, 40 and 50 threads.

Fig. 5 shows the graph of throughput versus number of

threads. It clearly shows that as the number of threads

increase, throughput also increases.

Fig. 5. Throughput Versus Number of Threads

V. CONCLUSION AND FUTURE SCOPE

Multi-Version-PulsatingSTM is an extension of

PulsatingSTM algorithm[21] that is developed by the authors

of this work. The extension is based upon employing half of

the transactions doing reading operation while half doing

writing operation concurrently on a shared in-memory data

structure, and the valid writing transactions are writing the

updated data element as a different version on the shared data

structure. The concurrency among the transactions is

controlled by a novel Software Transactional Memory based

optimistic concurrency control technique employing

timestamping.

The throughput of the algorithm is found to be improving

with the increasing number of threads. As it is a lock-free

approach it is undoubtedly better than many lock based STM

algorithms in literature.

The authors propose to employ this algorithm as a means to

perform parallel sorting in an enormously large size data

structure. Also, the authors propose to modify this algorithm

to work on other data structures like tree and linked list.

Multi-Version-Pulsating STM: A Multi-Version Optimistic Concurrency Control Scheme for Highly Parallel

in-Memory Workload in a Multi Core Environment

1978

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A9526109119/2019©BEIESP

DOI: 10.35940/ijeat.A9526.109119

o

REFERENCES

1. Sana Jafar, Pankaj Kumar, Ranjana Rajnish, ―Reviewing the Current

Concurrency Control Techniques in Multi and Many core systems‖, In

Proceedings of the 12th INDIACom; INDIACom-2018 5th 2018

International Conference on ―Computing for Sustainable Global

Development‖, Bharati Vidyapeeth’s Institute of Computer

Applications and Management (BVICAM), New Delhi (INDIA),

March 14th – 16th, 2018, pp. 525-530.

2. C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R.

Stonecipher, N. Verma, and M. Zwilling. Hekaton, ―SQL Server’s

memory-optimized OLTP engine‖, In Proceedings of the 2013

SIGMOD International Conference on Management of Data, New

York, USA, June 22, 2013, pp. 1243-1254.

3. T. Neumann, T. Mühlbauer, and A. Kemper. ―Fast serializable

multi-version concurrency control for main-memory database

systems‖, In Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, Melbourne, Victoria, Australia,

May 31-June 04, 2015, pp. 677-689.

4. J. M. Faleiro and D. J. Abadi., ―Rethinking serializable multiversion

concurrency control‖, In. Proceedings of VLDB Endowment, Vol.8,

No. 11, July , 2015. pp. 1190-1201.

5. J. Levandoski, D. Lomet, S. Sengupta, R. Stutsman, and R. Wang,

―.High performance transactions in Deuteronomy‖. In Proceedings of

Conference on Innovative Data Systems Research (CIDR 2015),

Asilomar, California, USA, Jan. 4-7, 2015.

6. K. Kim, T. Wang, R. Johnson, and I. Pandis. ―ERMIA: Fast

memory-optimized database system for heterogeneous workloads‖. In

Proceedings of the 2016 ACM SIGMOD International Conference on

Management of Data, San Francisco, California, USA, June 26- July

01, 2016, pp. 1675-1687.

7. T. Wang, and H. Kimura, ―Mostly-Optimistic Concurrency Control

for Highly contended dynamic workloads on a thousand cores‖, In

proceedings of VLDB Endowment, vol. 10. No. 2., 2016, pp. 49-60.

8. H. Lim, M. Kaminsky, and D.G. Andersen, ―Cicada: Dependably Fast

Multi-core In-Memory Transactions‖, In Proceedings of the 2017

ACM International Conference on Management of Data SIGMOD,

Chicago, Illinois, USA, May 14 - 19, 2017, pp. 21 – 35.

9. X. Yu, A. Pavlo, D. Sanchez, and S. Devadas, ―TicToc: Time

travelling Optimistic Concurrency Control‖, In Proceedings of the

2016 International Conference on Management of Data SIGMOD, San

Francisco, California, USA, June 26 - July 01, 2016, pp. 1629-1642.

10. Nir Shavit and Dan Touitou, ―Software Transactional memory.‖ In

Proceedings of the 14th Annual ACM Symposium of PODC 95,

Ottawa Ontario CA, August 20-23, 1995, pp. 204-213.

11. El-Shambakey, Mohammed and Binoy Ravindran, ―STM

concurrency control for multicore embedded real-time software: time

bounds and tradeoffs.‖ In Proceedings of SAC (2012), Riva del Garda,

Italy, March 25-29, 2012, pp. 1602-1609.

12. Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao

Minh, Benjamin Hertzberg, ―McRT-STM: A High Performance

Software Transactional Memory System for a Multi-Core Runtime.‖,

In Proceedings of 11th ACM SIGPLAN symposium on PPoPP, New

York, NY, USA., ’06 March 29-31, 2006, pp. 187-197.

13. Yunlong Xu, Rui Wangy, Nilanjan Goswamiz, Tao Liz, Lan Gaoy,

Depei Qian, ―Software Transactional Memory for GPU Architectures‖,

In Proceedings of IEEE/ACM International Symposium on CGO ’14,

Orlando, FL, USA, February 15 - 19 2014, pp. 1

14. Xiaowei Ren and Mieszko Lis, ―High-performance GPU Transactional

Memory via Eager Conflict Detection‖, In Proceedings of 2018

International Symposium on High Performance Computer

Architecture, Vienna, Austria, Feb 24-28, 2018, pp. 235-246

15. Mohamed Mohamedin, Sebastiano Peluso, Masoomeh Javidi Kishi,

Ahmed Hassan, Roberto Palmieri ― Nemo: NUMA-aware Concurrency

Control for Scalable Transactional Memory‖, In Proceedings of 47th

International Conference on Parallel Processing, Eugene, OR, USA,

August 13–16, 2018, Article No. 38.

16. Dave Dice, Ori Shalev, and Nir Shavit, ―Transactional Locking II.‖, In

Proceedings of the 20th international conference on Distributed

Computing, Stockholm, Sweden, September 18 - 20, 2006 , pp.

194–208.

17. Aleksandar Dragojević, Rachid Guerraoui, and Michal Kapalka, ―

Stretching Transactional Memory‖, In Proceedings of the 30th ACM

SIGPLAN Conference on Programming Language Design and

Implementation, Dublin, Ireland, June 15 - 21, 2009, pp. 155-165.

18. Pascal Felber, Christof Fetzer, and Torvald Riegel, ―Dynamic

Performance Tuning of Word-based Software Transactional Memory‖,

In Proceedings of the 13th ACM SIGPLAN Symposium on Principles

and practice of parallel programming, Salt Lake City, UT, USA,

February 20 - 23, 2008, pp. 237–246.

19. Michael F. Spear, Maged M. Michael, and Christoph von Praun,

―RingSTM: Scalable Transactions with a Single Atomic Instruction‖,

In Proceedings of the twentieth annual symposium on Parallelism in

algorithms and architectures, Munich, Germany, June 14 - 16, 2008,

pp. 275–284.

20. Luke Dalessandro, Michael F. Spear, and Michael L. Scott, ―NOrec:

Streamlining STM by Abolishing Ownership Records‖. In Proceedings

of the 15th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming. Bangalore, India, January 09 - 14, 2010, pp.

67–78.

21. Sana Jafar, Ranjana Rajnish, and Pankaj Kumar, ―PulsatingSTM-The

in-memory Optimistic Concurrency Control Technique for Multi core

systems (Journal style—Submitted for publication),‖ International

Journal of engineering and Advanced Technology (IJEAT),

Vol-9(Issue-1) to be published.

22. T. E. Carlson, W. Heirman, and L. Eeckhout., ―Sniper: Exploring the

level of abstraction for scalable and accurate parallel multi-core

simulations‖, In Proceedings of International Conference on High

Performance Analysis, Networking, Storage and Analysis, Seatle, WA,

USA, Nov. 12-18, 2011, pp. 1-12.

AUTHORS PROFILE

Sana Jafar is currently working as an IT

consultant with Argus Technology LLC.

She is a research scholar in the faculty of

Information Technology from Amity

University Uttar Pradesh Lucknow

Campus, enrolled since January 2015. She

has worked as an Assistant Professor

(Computer Science & IT) in the

Department of Amity School of

Engineering and Technology, Amity University Uttar Pradesh Lucknow

Campus from 2009 till 2018. She completed her MCA with silver medal and

received her degree with honors in 2009. Her area of research is Parallel

Computing and High Performance Computing. She is a student member of

IEEE. She has 4 papers published and presented in IEEE sponsored

International and National conferences and one book chapter published in

Scopus Indexed Ebook series titled ―Advances in Parallel Computing‖, IOS

Press, Netherlands. Sana Jafar has Participated in the Short Term Course

(under QIP IIT Delhi) on many core parallel Programming at IIT Delhi from

4th June -15th June 2018., learning hands on Nvidia CUDA: API for parallel

programming in GPU based architecture and accessed the HPC clusters at

IIT Delhi (PADUM). She has also worked as an intern under Prof Subodh

Kumar (Dept. CSE at IIT Delhi) under the Summer Faculty Research Fellow

Program from 4th June -13th July 2018 at IIT Delhi. She has published a

useful workbook on Object oriented programming using C++ as main

author(publishers: Alok Prakashan) for the B.Tech students of Amity

University and is in the process of generalizing it for the B.Tech pursuing

students of all the engineering colleges in Uttar Pradesh. She has

successfully attended various faculty development programs and workshops

in Amity University Lucknow campus and outside. As well has played an

important part in conducting such programs within the Amity University

Lucknow campus. She has attended the five days military training camp

organized by Amity University Manesar in 2016 as faculty guide with post

graduate students. She has also secured a second position in women

badminton in the annual sports meet of Amity University Lucknow

(Sangathan) in 2015.

Sana Jafar is diligently working towards inventing innovative and efficient

ways for improving concurrency control methods in multi and many core

systems using STM and optimistic methods.

Dr. Ranjana Rajnish is an Assistant

Professor at Amity Institute of Information

Technology at Amity University,

Lucknow. Dr. Ranjana possesses

approximately 25 years of experience in

academics/research. She has been engaged

with institutions like U.P. Technical

University and Amity University in roles

ranging

from a

faculty in computer science to Academic

Head. Her area of interest includes

Software Engineering, Opinion

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-1, October 2019

1979

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A9526109119/2019©BEIESP

DOI: 10.35940/ijeat.A9526.109119

Mining/Sentiment Analysis and Healthcare.

She has several publications in national and international journals and

conference proceedings of National and International Conferences of repute.

She is also member of various professional bodies like Computer Society of

India (CSI), Association of Computing Machinery(ACM), International

Association of Engineers (IAENG), Internet Society and Computer Science

Teaching Association (CSTA).

Along with being a committed teacher and a passionate researcher, Dr.

Ranjana is reviewer for various International Journal and member of

editorial board for different International Journals. She is also reviewer,

member of technical programme committee in various conferences of repute

in and outside India. She has many Ph.D. scholars pursuing Ph.D. under her.

Dr. Pankaj Kumar is currently working as

Assistant Professor (Reader) in Department

of Computer Science & Engineering in Sri

Ramswaroop Group of Professional College,

Lucknow. He has more than 18 years of

teaching experiences. He received his MCA

degree in 2001, M.Tech in 2010 and PhD

degree in Computer Application in 2011. His

Area of Expertise is Parallel Computing/

Mining/Security. More than 50 research papers of Dr. Pankaj Kumar have

been published in various national/international journals and IEEE

proceeding publication. He is Senior Member of IEEE, Professional Member

of ACM and Life member of CSI, IETE, ISTE, IAENG, ISOC and IACSIT.

He is member of Management Committee of CSI and IETE Lucknow

Chapter. He is reviewer for various International Journal and member of

editorial board for different International Journals. He also participated in

various conferences as reviewer, member technical committee, and co-chair.

One PhD thesis is awarded and eight students are enrolled as PhD scholar

under his guidance. More than 10 students are guided by him in M.Tech

Thesis.

