
International Journal of Engineering and Advanced Technology (IJEAT)

 ISSN: 2249 – 8958, Volume-9 Issue-1, October 2019

3791

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: A9826109119/2019©BEIESP

DOI: 10.35940/ijeat.A9826.109119



Abstract: A large amount of data which includes spatial and

temporal information related to different fields like geography,

satellite, medical or multimedia is generated and collected at an

extraordinary scale. Such data is produced by satellites, mobile

devices, emerging applications like social networking sites, photo

sharing sites and many more. As the whole world is aware of the

importance of such spatio-temporal data, a great amount of

research work is evolving around efficient storage structures and

algorithms to handle a variety of spatio-temporal queries. In this

paper, the authors are introducing a novel spatio-temporal

indexing structure k-dStH which is an extension of k-dSTHash

indexing structure. It uses master hash table, local hash table and

B-tree additionally which are based on timestamp values. The

researchers also introduce an algorithm

k-dStHSpaTempRangeSrch based on the proposed indexing

structure to find spatio-temporal objects in given spatial range at

particular temporal value. The performance analysis shows that

the algorithm proposed by the authors is far more efficient as

compared to brute force technique of searching for the

spatio-temporal objects.

Keywords: Brute force, B-Tree, Hash Table, Indexing, k-d

Tree, Spatio-temporal Dataset, Spatio-temporal Range Search.

I. INTRODUCTION

Spatio-temporal range search is one of the essential and

important areas in case of computational geometry. Spatial

range search is to retrieve all data records from a

dataset/database which fulfill the provided range restrictions

for given set of dimensions. These might include report

problem in which details of objects satisfying the query are

reported or count problems where just the numbers of

retrieved objects is reported. The spatio-temporal range

search queries retrieve for the records based on both spatial

and temporal range restrictions. Also, there can be queries to

retrieve spatio-temporal objects within a given range at

particular time. In this paper, the authors propose a novel

indexing structure k-dStH to index spatio-temporal data and

an algorithm k-dStHSpaTempRangeSrch to search for

spatio-temporal objects within given range at given time.

Experimental evaluation of the algorithm clearly

demonstrates the efficiency of the proposed structure.

 Revised Manuscript Received on October 15, 2019.

Sumeet Gill, Department of Mathematics, M. D. University, Rohtak,

Haryana, India. Email: drsumeetgill@gmail.com

Meenakshi, Department of Mathematics, M. D. University, Rohtak,

Haryana, India. Email: mshthebest@gmail.com

II. RELATED WORK

In this day and age, the indexing structures and techniques

to index spatio-temporal data competently are attaining a vast

amount of insight and attention of researchers,

academicians and engineers [1]. Some of the well-accepted

indexing structures to save and retrieve information about

spatial objects are Grid files [2], R+ trees [3], K-D-B trees [4]

and Quad-trees [5]. These structures are also used as base

sturctures of lots of spatio-temporal indexing structures. [6]

presents an efficient graph-based spatio-temporal indexing

method for task-oriented multi-modal scene data

organization. This research work proposed spatio-temporal

index which is multi-modal and multi-level hybrid in design.

It consists of two parts- a local index and a global index.

There are many fine-grained indexes in local index. These

fine grade indices include B+-tree, Quad-tree, R+ -tree,

graphs and hashing. Main memory and external storage hold

these indexes and used for proficient scheduling of data

related to computing intensive and I/O-intensive tasks. The

global index is based on graph and manages the time,

semantics and links between data objects and features of

multi-modal scene. [7] designs and presents a hierarchical

information quadtree for efficient spatial temporal image

search for multimedia stream. It is spatio-temporal search

system for images. The system is composed of three

components-preprocess module, update module, and query

modules. The job of preprocess module is to get the incoming

spatio-temporal image, to extract geo-temporal image’s

location, and then sends every geo-temporal image and its

location to the update module. Location can be precise

coordinates i.e. latitude and longitude or it can be center point

of MBR i.e. Minimum Bounding Rectangle. The update

module confirms timely insertion of every incoming

spatio-temporal image in memory indexes. It also checks that

every incoming spatio-temporal image query is answered

correctly and efficiently using in-memory indexes. The query

module employs spatio-temporal visual pruning methods

which lessens the count of visited images for returning final

result.

III. BRUTE FORCE METHOD

In this section, we are explaining the brute force method to

search for spatio-temporal data in given spatial range at

particular time. Brute force technique of searching for

required objects is the algorithm usually used for its simplicity

as no domain knowledge is required to implement it.

Spatio-Temporal Range Search using K-DSTH

Indexing Structure

Sumeet Gill, Meenakshi

mailto:mshthebest@gmail.com

Spatio-temporal Range Search using k-dStH Indexing Structure

 3792

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: A9826109119/2019©BEIESP

DOI: 10.35940/ijeat.A9826.109119

 There is no focus on the improvement of performance,

tries out all possible combinations and relies on the power of

computing absolutely. Brute force method is extremely

straightforward and can implement to search for any kind of

data. We have implemented this method using linear linked

list to store the data from spatio-temporal dataset under

analysis. Algorithm I, bFSpaTempRangeSrch presents the

method of searching for spatio-temporal objects in given

spatial range at particular time using brute force method of

searching.

Algorithm - I: bFSpaTempRangeSrch

(To search for spatio-temporal objects using Brute Force

Method)
Algorithm int bFSpaTempRangeSrch (struct bruteForceStr* HEAD,

POINT coordinatesAboutWhichToSearch, RANGE

withInRange, TIME timeStampToSearch)

Inputs to

Algorithm

HEAD [type-struct bruteForceStr*]:

Starting pointer of the Structure

coordinatesAboutWhichToSearch [type- POINT]:

N-dimensional queryPoint about which objects are to be

found

withInRange [type-RANGE]:

Spatial range within which the objects are to be searched

timeStampToSearch [type- TIME]:

Time at which the objects are to be searched

Output

from

Algorithm

NO_DATA [type-int]:

When structure is empty

or

fndWithInRangeCount [type-int]:

Number of spatio-temporal objects which satisfy the

conditions

resultList [type-rsltLinkLst]:

Details of spatio-temporal objects which satisfy the

conditions

BEGIN

 IF HEAD is NULL

 THEN

 resultList  NULL

 return NO_DATA

 END IF

 SET TEMP  HEAD

 COUNT  0

 LOOP WHILE TEMP != NULL

 DO

 for every dimension dim repeat

 distanceSquare += square (record [dim] -

coordinatesAboutWhichToSearch [dim])

 end for

 IF (distanceSquare < Square(withInRange))

 THEN

IF timestamp epoch value of node TEMP match

with epoch value of timeStampToSearch

 THEN

 increment fndWithInRangeCount by 1

 add record to resultList

 END IF

 END IF

 distanceSquare = 0

 Update TEMP to point to next node of List with

spatioTemporalDataRecord

 END WHILE

 return fndWithInRangeCount

END

The algorithm bFSpaTempRangeSrch receives a pointer

HEAD of type struct bruteForceStr,

coordinatesAboutWhichToSearch of type POINT,

withInRange of RANGE type and timeStampToSearch of

TIME type. Also, a pointer to resultList of type rsltLinkLst is

made available as a global variable to store details of retrieved

spatio-temporal objects. It there is no record in the list,

NO_DATA is returned back to notify the same. If records

exist, then the whole list is traversed and distance of every

traversed object from coordinatesAboutWhichToSearch will

be calculated. Square of distances for each dimension is

considered for calculating distanceSquare. If distanceSquare

is less than the squared value of range then the temporal value

of current object is compared with queried

timeStampToSearch, and, if it matches then

fndWithInRangeCount is incremented by 1 and record is

inserted to resultList. When the whole dataset is processed,

fndWithInRangeCount will contain the number of

spatio-temporal objects found within given range at particular

given time and resultList will be holding details of every

spatio-temporal object satisfying the queried conditions. If no

record satisfies the query conditions, fndWithInRangeCount

is returned as zero and nothing is inserted in the resultList.

The disadvantage of this technique is that the researchers need

to compare each and every object’s details with queried

coordinatesAboutWhichToSearch and timeStampToSearch.

It takes lot of time and resources and is not an efficient way to

organize and search for data especially spatio-temporal data.

IV. PROPOSED SPATIO-TEMPORAL INDEXING

STRUCTURE: K-DSTH

The researchers are proposing a spatio-temporal indexing

structure k-dStH in this research work. This structure is a

combination of k-d tree, B-Tree and Hash table. Hash table

and B-Tree are maintained at two levels – Master i.e. global

level and Local level. This indexing structure is a data

structure which can index duplicate spatio-temporal key

datasets in an efficient way. k-d tree is used to organize

records on the basis of spatial data using n-dimensional spatial

coordinates, local hash table at every k-d tree node is used to

store spatio-temporal record at particular spatial coordinate

on the basis of epoch value of

https://en.wikipedia.org/wiki/Software

International Journal of Engineering and Advanced Technology (IJEAT)

 ISSN: 2249 – 8958, Volume-9 Issue-1, October 2019

3793

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: A9826109119/2019©BEIESP

DOI: 10.35940/ijeat.A9826.109119

Fig. 01: k-dStH Indexing Structure

timestamp and a local B-Tree is attached with local hash table

to store spatio-temporal objects at that particular spatial node

for holding records with hash keys based on epoch value of

timestamp.

The Master Hash Table keeps record of every spatio-temporal

record according to hash keys based on timestamp values

without worrying about spatial attributes. It is used to retrieve

the results of queries based on temporal values only. To

retrieve the results related to spatio-temporal queries, first k-d

tree is consulted and then hash key for temporal value is

generated to find the required objects using Local Hash Table.

B-Tree linked with Local Hash Table organizes records with

same temporal keys but at more refined level. While

organizing spatio-temporal records in k-dStH indexing

structure, the pointers to the spatio-temporal records are

inserted at proper places in B-Trees in both Master Hash

Table and Local Hash Table.

V. SPATIO-TEMPORAL RANGE SEARCH USING

K-DSTH INDEXING STRUCTURE

In this section, the authors are proposing an algorithm to

search for the spatio-temporal objects within given range

about given spatial location at particular temporal value in

k-dStH indexing structure. The algorithm starts traversing at

the root of k-dStH indexing structure and keeps on pruning

the sub-tree if bounding box of the sub-tree doesn’t intersect

with the requirements of range query. If bounding box of

sub-tree falls entirely within requirements of the range query,

it will save all objects of sub-tree in the result list. If bounding

box of sub-tree overlaps range query requirements then the

algorithm recurses left and right.

The algorithm is divided into two sub-algorithms where first

sub-algorithm is the wrapper for second sub-algorithm. The

algorithm II (a) k-dStHSpaTempRangeSearch receives a

pointer kdS_RootNode to the root node of k-dStH indexing

structure of type struct k-dStH, rangeWithinWhichToSearch

of Distance type and pointer timeStampToSearch of type

timestamp. It is a wrapper algorithm to initialize

withInRangeResultList, call another algorithm

findWithInRangeSpaTemporal and return

withInRangeiResultLst.

Algorithm - II (a): k-dStHSpaTempRangeSearch (To

search for spatio-temporal objects in k-dStH Indexing

Structure)
Algorithm

- II (a)

struct kdSLstRgSrResult* k-dStHSpaTempRangeSearch (struct

k-dStH * kdS_RootNode, Location queryPoint, Distance

rangeWithinWhichToSearch, timeStamp* timeStampToSearch)

Inputs to

the

Algorithm

kdS_RootNode [type-struct k-dStH*]:

Root node of k-dStH index Structure.

queryPoint [type-Location]:

N-dimensional queryPoint about which objects are to be found.

rangeWithinWhichToSearch [type-Distance]:

Range within which objects are to be searched.

timeStampToSearch [type-timeStamp*]:

Temporal value on which the objects are to be searched.

Output

from

Algorithm

withInRangeResultList [type-struct kdSLstRgSrResult*]:

List to store the result i.e. object details which qualify the query.

Algorithm

struct kdSLstRgSrResult* k-dStHSpaTempRangeSearch (struct

k-dStH *kdS_RootNode, Location

coordinatesAboutWhichToSearch, Distance

rangeWithinWhichToSearch, timeStamp* timeStampToSearch)

BEGIN

 Initialize withInRangeResultList

 Call

findWithInRangeSpaTemporal(kdS_RootNode,

coordinatesAboutWhichToSearch, rangeWithinWhichToSearch,

withInRangeResultList, kdS_dimension, timeStampToSearch)

 return withInRangeResultList

END

Algorithm - II (b): findWithInRangeSpaTemporal (To search

for spatio-temporal objects in k-dStH Indexing Structure)

Spatio-temporal Range Search using k-dStH Indexing Structure

 3794

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: A9826109119/2019©BEIESP

DOI: 10.35940/ijeat.A9826.109119

Algorithm

- II (b)

int findWithInRangeSpaTemporal(struct k-dStH

*k-dStH_node, Location coordinatesAboutWhichToSearch,

Distance range, struct resultList *withInRangeResultList, int

currentDimension, timeStamp* timeStampToSearch)

Inputs to

the

Algorithm

k-dStH [type- struct *k-dStH_node]:

Tree/Sub-tree root node.

coordinatesAboutWhichToSearch [type- Location]:

N-dimensional queryPoint about which objects are to be found.

rangeWithinWhichToSearch [type- Distance]:

Range within which objects are to be searched.

resultList [type - struct *withInRangeResultList]:

List to store the result i.e. object details which qualify the query.

currentDimension [type – int]:

Dimension to be considered for current node

timeStampToSearch [type-timeStamp*]:

Temporal value on which the objects are to be searched.

Outputs

from

Algorithm

foundWithInRangeCount [type - int]:

Number of objects found within given Range of queried Location.

withInRangeResultList [type - struct resultList *]:

List to store the result i.e. object details which qualify the query.

Algorithm int findWithInRangeSpaTemporal(struct k-dStH

*k-dStH_node, Location coordinatesAboutWhichToSearch,

Distance rangeWithinWhichToSearch, struct resultList

withInRangeResultList, int currentDimension, timeStamp

timeStampToSearch)

BEGIN

if k-dStH_node is NULL

then

 return 0

end if

distanceSquare = 0

for every dimension 0 to maxDimensions repeat

 distanceSquare += square of difference in

coordinatesAboutWhichToSearch and k-dStH_nodePoint for

currentDimension

end for

if distanceSquare is less than or equal to square of

rangeWithinWhichToSearch

then

 if records exist at hash key index in local hash table based on

epoch value of timeStampToSearch

 then

 Traverse local B-Tree to search for exact epoch value

of timeStampToSearch

 if record is for queried timeStampToSearch

 then

 add k-dStH_nodePoint to withInRangeResultList

 increment foundWithInRangeCount by 1

 end if

 end if

end if

distanceDiff = difference in coordinatesAboutWhichToSearch and

k-dStH_nodePoint for currentDimension

if distanceDiff is less than or equal to 0

then

 returnedCount = CALL

findWithInRangeSpaTemporal(k-dStH_nodeLeft,

coordinatesAboutWhichToSearch, rangeWithinWhichToSearch,

withInRangeResultList, currentDimension)

else

 returnedCount = CALL

findWithInRangeSpaTemporal(k-dStH_nodeRight,

coordinatesAboutWhichToSearch, rangeWithinWhichToSearch,

withInRangeResultList, currentDimension)

end if

if returnedCount is greater than or equal to 0 and distanceDiff less

than range

then

 increment foundWithInRangeCount by returnedCount

 if distanceDiff less than or equal to 0

 then

 returnedCount = CALL

findWithInRangeSpaTemporal(k-dStH_nodeLeft,

coordinatesAboutWhichToSearch, rangeWithinWhichToSearch,

withInRangeResultList, currentDimension)

 else

 returnedCount = CALL

findWithInRangeSpaTemporal(k-dStH_nodeRight,

coordinatesAboutWhichToSearch, rangeWithinWhichToSearch,

withInRangeResultList, currentDimension)

 end if

end if

if returnedCount is -1

then

 return -1

end if

increment foundWithInRangeCount by returnedCount

return foundWithInRangeCount

END

The algorithm II (b) findWithInRangeSpaTemporal receives

root node k-dStH_node of the proposed structure, spatial

n-dimensional location coordinatesAboutWhichToSearch

about which to search for the objects,

rangeWithinWhichToSearch range within which objects are

to be searched, pointer to result list withInRangeResultList to

hold details of spatio-temporal objects retrieved,

currentDimension which keeps the track of dimension for

current level of the indexing structure k-dStH and temporal

dimension timeStampToSearch which mentions the time with

which data should belong to. The algorithm is capable of

indexing n-dimensional spatio-temporal data where

dimensions of current dataset are initialized using

maxDimensions. If k-dStH_node is NULL, then NO_DATA is

returned back. Otherwise, if spatial coordinate value of

current node for currentDimension is less than the coordinate

value of coordinatesAboutWhichToSearch to be searched for

same dimension, then control is passed to left sub-tree;

otherwise, the control is passed to right sub-tree. It continues

on recursive basis until a leaf node is reached or spatial

n-dimensional coordinates are matched for every dimension.

If the leaf node is reached and still the node with matching

coordinatesAboutWhichToSearch is not found, then

NO_DATA is returned, else next, search for temporal attribute

by traversing through B-Tree in local hash table at index

epochHashidSearch is started. Hash key epochHashidSearch

is generated using another module GenerateEpochValue

(timeStampToSearch) which receives timeStampToSearch

and generates epoch value and then hash id fir it. If no entry

exists at calculated hash key index epochHashidSearch at

current node, then return NO_DATA, else traverse through

B-Tree to add all details in resultList and increment the

foundWithInRangeCount for every record in B-Tree. Before

adding to resultList, a final filter is applied to match with

epoch value of timeStampToSearch to filter data out with

different timestamps but same hash-id key, as there might be

one to many relationships in hash-id key and timestamp value.

Also, if any query is time related only without inclusion of

nearest neighbor or range search, results can be retrieved

using only Master Hash Table which will result in lot of time

and resource saving.

VI. EXPERIMENTAL ANALYSIS

The authors have implemented the algorithms using language

C and GNU Compiler Collection (GCC)

International Journal of Engineering and Advanced Technology (IJEAT)

 ISSN: 2249 – 8958, Volume-9 Issue-1, October 2019

3795

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: A9826109119/2019©BEIESP

DOI: 10.35940/ijeat.A9826.109119

 compiler - version 6.4.3 on Operating System

Ubuntu-10.04.1-Desktop-amd64. For visualization of

spatio-temporal datasets and output of different queries using

proposed algorithm, Quantum Geographic Information

System (QGIS) Desktop 3.4.7 has been used. The authors

have used Google Satellite and Google Map images using

XYZ Tiles available in the QGIS browser.

For analysis of our algorithm, the authors have created two

synthetic datasets related to trees in Haryana and nearby

boundary locations. The coordinates i.e. latitude and

longitude of Haryana have been downloaded from online

sources and modified using shell scripts in Linux to make it

suitable for our research work. First dataset holds the trees

those were in Haryana and nearby areas in 2010. Each entry in

spatio-temporal dataset represents approx. 5K trees. The

second dataset contains the same for the year 2018. The

authors have searched for the trees in given range of a location

in Haryana at particular time in 2010 and 2018. The retrieved

data has been shown pictorially and it can be concluded very

easily that there is great fall in the number of trees in queried

range during the timespan under study. Also, the performance

analysis proves that the proposed indexing structure and

algorithm outperform the algorithm based on brute force

method of searching. Fig. 01 and Fig. 02 show all the data

points (representing approx. 5K trees per data point) of

spatio-temporal datasets for the year 2010 and 2018

respectively. Fig. 03 and Fig. 04 show the output of queries to

find the trees within range of .002 about

coordinatesAboutWhichToSearch (Latitude: 30.1, Longitude:

76.8) on Jan 30, 2010 and Jan 30, 2018 respectively. Fig. 05

and Fig. 06 show the output of queries to find the trees within

range of .002 about coordinatesAboutWhichToSearch

(Latitude: 30, Longitude: 76) on Dec 30, 2010 and Dec 30,

2018 respectively. From the images itself, it can be observed

clearly that there is drastic fall in number of trees in the area

under study.

Table 01 gives the comparision of Algorithms

bFSpaTempRangeSrch and k-dStHSpaTempRangeSearch. It

shows that both algorithms search for same number of

datapoints for every given range, but the time taken by

algoritms is noticably different. When location to search

about is coordinatesAboutWhichToSearch (Latitude: 30.1,

Longitude: 76.8) and range is 0.002 radius unit, the algorithm

bFSpaTempRangeSrch takes 493 s and 312 s for reporting

the results related to Jan. 30, 2010 and Dec. 30, 2018

respectively, while algorithm k-dStHSpaTempRangeSearch

takes only 09 s and 04 s for searching the same. Also, when

the location to search about is

coordinatesAboutWhichToSearch (Latitude: 30, Longitude:

76) and range is 0.002 radius unit, the algorithm

bFSpaTempRangeSrch takes 2031 s and 1273 s for

reporting the results related to Jan. 30, 2010 and Dec. 30,

2018 respectively, while algorithm

k-dStHSpaTempRangeSearch takes only 12 s and 07 s for

searching the same, which is remarkably far less as compared

to previous algorithm. It proves that, for given case, time

taken by algorithm bFSpaTempRangeSrch is more than 11

times as compared to time taken by algorithm

k-StHSpaTempRangeSearch. Similarly, for test cases for

diiferent range radius units, our proposed algorithm has been

proved far better as compared to brute force method.

Fig. 01: Trees as per Dataset 01 (Jan. 30, 2010)

Fig. 02: Trees as per Dataset 02 (Dec. 30, 2018)

Spatio-temporal Range Search using k-dStH Indexing Structure

 3796

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: A9826109119/2019©BEIESP

DOI: 10.35940/ijeat.A9826.109119

Fig. 03: Trees found within range of .002

about coordinate (Latitude: 30.1,

Longitude: 76.8) (Jan. 30, 2010)

Fig. 04: Trees found within range of .002 about

coordinate (Latitude: 30.1, Longitude: 76.8)

(Dec. 30, 2018)

Fig. 05: Trees found within range of .002

about coordinate (Latitude: 30,

Longitude: 76) (Jan. 30, 2010)

Fig. 06: Trees found within range of .002 about

coordinate (Latitude: 30, Longitude: 76) (Dec.

30, 2018)

Table 01: Comparison of Algorithms bFSpaTempRangeSrch and k-dStHSpaTempRangeSearch

Location

(Range:

radius units)

Count of Neighbors found in given range

Algorithm 01

bFSpaTempRangeSrch

(in micro secs.)

Algorithm 02

k-dStHSpaTempRangeSearch

(in micro secs.)

Latitude: 30.1,

Longitude: 76.8

(0.002)

(Jan. 30, 2010) (Dec. 30, 2018) (Jan. 30, 2010) (Dec. 30, 2018) (Jan. 30, 2010) (Dec. 30, 2018)

06 00 493 312 9 4

Latitude: 30,

Longitude: 76

(0.002)

85 35 2031 1273 12 7

Fig. 08: Performance evaluation of Algorithms bFSpaTempRangeSrch and k-dStHSpaTempRangeSearch

(Latitude: 30.1, Longitude: 76.8)

International Journal of Engineering and Advanced Technology (IJEAT)

 ISSN: 2249 – 8958, Volume-9 Issue-1, October 2019

3797

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: A9826109119/2019©BEIESP

DOI: 10.35940/ijeat.A9826.109119

Fig.08: Performance evaluation of Algorithms bFSpaTempRangeSrch and k-dStHSpaTempRangeSearch

 (Latitude: 30, Longitude: 76)

Fig. 07 and Fig. 08 show the performance evaluation

graphically for both query points. It is clear after analysis that

algorithm k-dStHSpaTempRangeSearch is far better as

compared to algorithm bFSpaTempRangeSrch. The indexing

structure and algorithm, the authors proposed, is well efficient

to organize spatio-temporal data with duplicate keys. It stores

all instances found at same location and even at same time,

instead of saving only one latest data record.

VII. CONCLUSION AND FUTURE SCOPE

With advancement in technologies and availability of more

and more spatiotemporal data, it is becoming mandatory in

every field to organize and process the received data in an

efficient way. In this paper, we proposed a novel indexing

structure k-dStH to organize spatio-temporal data. It is

modified version of k-dStH indexing structure, which the

authors proposed in their earlier work and is composed of k-d

tree, B-trees, global and local hash tables. Also, an algorithm

for range query on spatio-temporal data is designed and

introduced. The authors carried out detailed experimental

evaluation to verify the correctness and efficiency of

proposed index and algorithm. Experimental analysis show

that the proposed structure is appreciable and the range search

algorithm k-dStHSpaTempRangeSearch takes remarkably

less time to search for objects in given range at particular time

as compared to brute force method of range search. In future

work, the authors will implement the structure to different

areas of research and also extend the structure from security

point of view.

REFERENCES

1 W. Lu and J. Han, "Distance-Associated Join Indices for Spatial Range

Search", 1992, pp. 284-292.

2 J. Nievergelt, H. Hinterberger and K. C. Sevcik, "The Grid File: An

Adaptable, Symmetric Multikey File Structure", vol. 9, 1984, pp. 38-71.

3 T. Sellis, N. Roussopoulos and C. Faloutsos, "The R+-Tree: A Dynamic

Index for Multi-Dimensional Objects", 1987, pp. 3-11.

4 J. T. Robinson, "The K-D-B tree: A Search Structure for Large

Multidimensional Dynamic Indexes", 1981, pp. 10-18.

5 H. Samet, "The Design and Analysis of Spatial Data Structures", 1990.

6 Z. B. Feng, L. Qing, L. Mingwei, Y. Zhang, F. Junxiao, Z. Xiao, Y. Li, H.

Maosu, Y. Huagui and W. , "An Efficient Graph-Based Spatio-Temporal

Indexing Method for Task-Oriented Multi-Modal Scene Data

Organization", 2018.

7 C. Zhang, R. Chen, L. Zhu, F. Huang, L. Yunwu and A. Liu, "Hierarchical

Information Quadtree: Efficient Spatial Temporal Image Search for

Multimedia Stream", 2018.

AUTHORS PROFILE

Sumeet Gill has done Ph. D in Computer Science.

He has taught in many reputed technical institutes

and has more than 16 years of experience in the

field of System Security and Artificial

Intelligence. His research papers have been

published in different Journals of

International/National repute and the proceedings

of the National/International Conferences. He has delivered invited talks and

chaired sessions in various conferences. Presently, he is working with

Maharshi Dayanand University, Rohtak, Haryana as an Associate Professor.

Meenakshi got Master Degree in Computer

Applications and M.Tech in Computer Science.

Then she completed her M.Phil in computer

science. She has worked with Bharti Telesoft

(Comviva Technologies), Okhla, Delhi for approx.

3.5 years as software developer and now working

with Maharshi Dayanand University, Rohtak,

Haryana as an Assistant Professor. She is also pursuing her Ph. D. in

Computer Science from the same university.

