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Abstract: In this paper spiking neural network (SNN) is 

presented which can discriminate odor data. Spike timing 

dependent synaptic plasticity (STDP) means a plasticity which is 

controlled by the presynaptic and postsynaptic spikes time 

difference. Using this STDP rule the synaptic weights are 

modified after the mitral and before the cortical cells. In order to 

determine whether the circuit has correctly identified the odor the 

SNN has either a high or a low response at the output for any odor 

given as the input. 
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I. INTRODUCTION 

The foremost function of the nervous system, in any 

biological organisms is communicatation and processing of 

information through neurons and synapses by means of 

electrical and chemical signals. In order to design more 

intelligently engineered systems the artificial neurons and 

synapses need to be designed such that they closely emulate 

the biological counterparts. The olfactory system is the 

sensory system used for odor detection. Fig. 1 shows a part of 

the mammalian olfactory system [1]. The Olfactory receptors 

respond to the odorants and transmit a signal to the 

glomerulus in order to pre-process and encode. The signal is 

then sent to the mitral cells and then to the cortical cell [2]. 

The spiking neural network presented here uses spike 

timing dependent learning circuit with dynamic adaptive 

weights for detection and classification of odor. The exact 

time at which spikes are generated by the neurons is 

considered for synaptic weight changes. STDP is controlled 

by the time difference between the presynaptic spikes and 

postsynaptic spikes [3]. The previous systems used chemical 

detection for the olfactory systems which addressed 

separately sensing, signal processing and neuromorphic 

simulation models [4] [5]. Also, the STDP has a stable 

learning process as it uses an adjustable weight dependent 

mechanism. The correlations detected here are much fine 

than using a weight-independent method. 
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Where most SNN circuits are based on the learning 

through firing rate, it doesn’t stand accurate in case of 

olfactory system as the distinction of odor in a mammalian 

olfactory system occurs within one sniff, Schaefer and 

Margrie proposed that the onset of latency can be a better 

alternative to the firing rate mechanism. In biological neurons 

the soma voltage is continuously oscillating even in the 

absence of the input stimuli, so the addition of a subthreshold 

oscillation in  

the network will help in mimicking the biological system 

better with improved classification performance [6]. 

For identifying the odor, in the proposed work we are 

using Cadence Virtuoso software with circuits designed and 

simulated in 180nm technology node. 

 
Fig. 1. Mammalian Olfactory System [1] 

II. OLFACTORY SYSTEM: CIRCUIT 

IMPLEMENTATION 

The Olfactory receptor cells in a response to the odorant 

molecules sends an indication to the glomerulus. Multiple 

glomeruli pre-process, in addition encode the signal to be 

transferred to the mitral cell and further to cortical cells via 

synapse. The flow of signal from the Receptor cells to the 

cortical cell where the identification of odor will happen as 

shown in the Fig. 2. Each glomerulus sends signal to 4 mitral 

cells. Each mitral cell is further linked to 1 cortical cell. To 

each cortical cell eight mitral cells are connected. Two 

cortical cells form a cortical cell group and they inhibit each 

other acting as a one vs one classifier [2]. In order to identify 

three different odors, each cortical cell group is designed to 

produce different output signal for each odor. Three cortical 

cell groups will be designed to identify the 3 odors. Every 

cortical cell in the cortical cell group will have different 

output pattern for each odor. When 2 of the 3 cell groups have 

similar output the categorization is done. 
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Fig. 2. Block diagram of the Signal Travelling in the 

Olfactory System 

A. Mitral Cell 

In the neural organization, the neurons does the integration 

of the excitatory post-synaptic current (EPSC) produced from 

the pre synaptic stimulus, for changing its soma voltage. 

When the voltage of soma is greater than a set threshold 

value, a spike is produced. A sub-thresholds oscillation is 

added to the chip in order to define the latency for the spike. 

In the circuit the oscillation is given by a saw tooth waveform 

voltage given externally. In case if the voltage of the 

oscillation is low and the current to reset the soma is large the 

probability of spike production is reduced, else if the voltage 

of oscillation is high the probability of spike to occur is also 

high. Therefore, the spike occurs only near the peak of the 

oscillation. The latency will be defined here as the time 

difference between the start of the subthreshold oscillation 

and the output spike. 

The threshold voltage of the mitral cell circuit is varied in 

order to represent varied responses of the sensors. Stronger 

input stimulus indicates a low threshold voltage. When the 

transistor supplying the EPSC is not in saturation and the 

source of EPSC is not on, there is no firing activity. 

In this paper the mitral cell only resets the soma voltage at 

the end of the period of subthreshold oscillation and not every 

time when the neural depolarization comes to an end. The 

mitral cell produces an infinite numbers of spikes after initial 

depolarization which can explain the wide pulse output 

produced. 

 
Fig. 3.  Mitral cell 

B. Synapse circuit 

Information exchange happens between the neuron cells 

with the help of synapse. Several sites called synapses 

transfer the pre synaptic neural signal to the post synaptic 

neuron. It acts as an area of contact between the presynaptic 

neurons and postsynaptic neuron. A link is formed in 

between presynaptic neuron and postsynaptic neuron by 

synapse and it sends the signals through electrical and 

chemical interactions. The basic unit for computation and 

information exchange in both biological and neuromorphic 

system is the synapse, so the synapse circuit has to be 

modelled with at most care. There are two types of synapse - 

excitatory and inhibitory. If probability of occurrence of 

action potential in a post synaptic neuron is increased by the 

action potential in the presynaptic neuron then it is called as 

excitatory synapse. Whereas inhibitory synapse is just the 

opposite of this [7].  

The circuit shown in Fig. 4 is a pulse shaping circuit, it 

takes input from presynaptic neuron and produces two 

voltages Vpot (potentiation voltage) and Vdep (depression 

voltage). When a pre synaptic spike occurs both Vdep and 

Vpot increases sharply and then there is a logarithmic decay 

[8]. This will increase the weight of the synapse, representing 

potentiation. The reverse will decrease the weight of the 

synapse as it will represent depression. In the Fig. 5 there are 

six MOSFETS, in which M1 and M6 operate in subthreshold 

region. The current flowing through M1 is Ipot which is 

proportional to Vpot and similarly the current flowing 

through M6 (Idep) is proportional to Vdep. The transistors 

M2 and M5 are in linear region acting as switches, switching 

ON for the duration in which the post and pre synaptic 

neurons spike. The transistors M3 and M4 restrict the current 

through the capacitor Cw. The voltage across the capacitor 

gives the synaptic weight. 

The synapse circuit shown in Fig. 6 has four transistors 

M1, M2, M3 and M4. M2 takes presynaptic spike input, M1 

acts as a weight transistor, M3 and M4 are current mirrors. 

The output of the circuit is the mean current which increases 

with the increase in the synaptic weight and pre synaptic 

spike. 

Whenever there is a presynaptic spike the transistor M2 

switches ON and it acts as a switch. In the mean time between 

the spikes the transistor M2 is in OFF state. M2 transistor will 

be operating in subthreshold regime. When a spike occurs the 

capacitor will discharge through the M1 and M2 transistor. In 

the intermediate time between spikes the capacitor will be 

charged through transistor M3 which is in diode connected 

configuration (always in saturation region). When the 

capacitor discharges the current through the transistor M4 it 

will increase as the gate of M4 transistor is connected to the 

capacitor. Thus the voltage across the capacitor controls the 

current value. This circuit implements the function of the 

synapse, conversion of the incoming voltage spike to a 

current spike with current strength proportional to the 

synaptic weight. 

C. Cortical Cell Group 

There are two cortical cells in every cortical group and an 

inhibitоr in it. Each cоrtical cell consists of a Timer, 

cоmparator, Vrate, Adaptive bias, Leakage current generatоr 

and input from synaptic cell. The period of each spike in high 

state and refractory duration of the capacitоr which integrates 

current is determined by the timer. The voltage integrated 

frоm оutput spike is Vrate.  

http://www.ijeat.org/
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Fig. 4. Pulse changing circuit 

 

 

Fig. 5. Weight changing circuit 

 
Fig. 6. Synapse Circuit 

The timing of each spike is crucial. In an oscillation period 

the number of spikes formed by each cell is counted. Even 

though the spiking frequency is different two cells of a cell 

 

 
Fig. 7. Cortical Cell 

 

group finding the same number of spiking in the two cells in a 

group is easy because it is counting the number of spikes 

formed in an oscillation period. The Vrate is an integer, to 

provide more accuracy Vrate can be taken as floating point 

number. The Inhibition block present in between the two 

cortical cell in the cortical group is crucial because Vrate 

value from two cortical cell is compared. The one with 

highervVrate compared to other cortical cell is inhibited by 

inhibition block by transmitting the negative current to it to 

lower the voltage. To get a distinct output each cortical cell 

try to prevent other. Due to this the output appears fast and 

distinct. As we mentioned before the cortical cell with higher 

Vrate isininhibited by passing the negative current, due to 

which the firing rate is smaller. Inhibition block is a positive 

feedback. The weak inhibition fails in creating the distinct 

output but stop the circuit from being inaccessible. In 

subthreshold oscillations the peaks are clustered around the 

peak, sо as to get a clear difference between the frequencies 

of spiking of cortical cells strong inhibition is used [3] 

Inputs for a comparator in a cortical cell is threshold 

voltage and Vsoma. As the difference between these two 

voltages are large the comparator provides output quickly. 

The slew rate is enhanced using two methods one is by EC 

generator, the other is by using adaptive current bias 

techniques used for comparator. EC generator acts like a 

leakage current generator when the soma voltage is lower 

than the threshold voltage. When the Vsoma is higher than 

the threshold voltage then the neurons depolarizes and the 

steep increase of output voltage is observed as the current 

generator is excitatory leading to a positive feedback. In 

adaptive bias when the comparator is depolarizing the bias 

current is enlarged due to which output voltage becomes 

steep These two methods help in achieving the fixed spike 

width along with reduced power consumption [3]. 

The large capacitor in the soma is an issue. Before the next 

operation the capacitor value should be zero that is complete 

discharge has to be taken place, as the size is huge the time 

taken to discharge the capacitor is not sufficient so there is a 

presence of some charge left before the next operation which 

affects the next operation. There is a solution by discharging 

the charge using large switch so the voltage of the soma can 

be reset quickly but this increases the switching power and 

also increases the leakage power so keeping the efficient 

power in mind this method cannot be used.  
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Anоther method is after the action potential is produced 

the EPSC integration is prevented for a short period of time. 

Sо the discharge of same happens and made sure the 

capacitance is zero before the next cycle [3]. 

 
Fig. 8. Block Diagram for Cortical Cell Group 

 

 

 

 
Fig. 9. Simulation waveform of Cortical cells for different 

threshold values 

III. SIMULATION AND RESULTS 

The mitral cell, synapse circuit and cortical cell were 

individually designed and simulated in using 180nm 

technology node in Cadence Virtuoso software.  

For the mitral cell circuit, the sensory input in terms of 

voltage (Vpulse) is given and it gives an output voltage pulse. 

The output voltage from mitral cell is given as input to the 

synapse circuit which acts as a communication link between 

the mitral and cortical cell, the synapse circuit produces a 

output current according to the synaptic weight as shown in 

Fig. 9. 

 
Fig. 10. Simulation waveform of Mitral cell, weight change 

circuit and Synapse circuit 

The cortical cell takes the input current from synapse 

circuit and it gives a spiking output voltage as shown in Fig. 

10 according to the threshold voltage given (which represents 

the odor data threshold). 

FUTURE SCOPE 

In future this work can be extended by connecting 48 

mitral cells with 48 synapse circuit and each mitral cell can 

be connected to one cortical cell, 8 mitral cells are connected 

to one cortical. Each cortical cell output can be compared 

with the others to distinguish the odors data. In the proposed 

work, the synapse circuit is designed for symmetric STDP, in 

future it can be done for asymmetric STDP. 
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