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Abstract: Let ( ),G V E be a graph with p number of vertices 

and q number of edges. An injective function 

 : 1,3,5, ,2 1→  −f V         p is called an even-odd harmonious 

labeling of the graph G if there exists an induced edge function 

( ) : 0,2, ,2 1→  −*
f E       q  such that  

i) 
*

f is bijective function 

ii) ( ) ( ) ( )( )( )2= = +*
f e uv f u f v mod  q  

The graph obtained from this labeling is called even-odd 

harmonious graph. 

Keywords : Graphs, Even-Odd Harmonious Labeling, Injective 

Function, Bijective Function.  

I. INTRODUCTION 

Labeling of a graph is an interesting and potential area of 

research in graph theory. It deals how the vertices and edges 

of the graph are labeled through well defined Mathematical 

functions [1]. The recent advancements and applications of 

various labelings of graphs have been updated by Gallian [5]. 

In the year 1967, Rosa in [9] introduced the graph labeling 

concepts. N. Lakshmi Prasana etl.,  in the paper [7] listed out 

the applications of graph labeling. We refer the text books 

written by Harary [4] and D. B.West [11] for the concepts and 

terminologies in graph theory.   The harmonious graph were 

introduced [3] in the year 1980. Further Z. Liang etl., [8] 

introduced the odd harmonious graphs in the year 2009 and 

P.B. Sarasija etl., [10] introduced the even harmonious  

graphs in the year 2011. Subsequently in the year 2015, 

Adalin Beatress and Sarasija in [2] introduced the even-odd 

harmonious graphs. Following this in the year 2019, we have 

proved that the graphs which are obtained through certain 

graph operations admit  the even-odd harmonious labeling in 

the paper [6]. In this paper, we prove further the existence of 

even-odd harmonious labeling to certain family of acyclic 

graphs. 

II.  PRELIMINARIES 

In this section, we recall the definitions of certain graphs 

pertaining to this paper. 
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Definition 2.1 

A caterpillar is a graph obtained from a path graph by 

adding one or more pendant edges to the vertices of the path. 

The caterpillars can be drawn as a bipartite graph in a zigzag 

vertical fashion with one partioned set on the left side and the 

other partioned set on the right side. A caterpillar with 

m vertices on the path and t pendant edges is 

denoted ( ), t
mCat l r+

, where the vertex set of the caterpillar 

can be partioned into two sets with l and r vertices. 

 

Definition 2.2 

1-regular lobster is a graph obtained from a path of n  

vertices nP   by attaching a path of length 2   to each vertex 

of nP .  

 

Definition 2.3 

Let nP  be a path with n  vertices. A coconut tree , n mCT  

is a graph obtained by joining m new pendent edges at an 

end vertex of nP . 

 

Definition 2.4 

A tree T  with n  legs and l  length is called spider tree if 

exactly one vertex of degree greater than or equal to 3 . 

 

Definition 2.5 

A complete bipartite graph 1,nK  is called a star graph nS  

and it has 1 n + vertices and n  edges. 

III. EVEN-ODD HARMONIOUS LABELING OF GRAPHS 

In this section, we provide the notion of even-odd 

harmonious labeling of graphs [2]. 

Definition 3.1 

Let ( ),G V E  be a graph with p  number of vertices and 

q number of edges. An injective function 

 : 1, 3, 5,  , 2 1f V p→  − is called an even-odd 

harmonious labeling of the graph G  if there exists an 

induced edge function ( ) * : 0, 2,  , 2 1f E q→  −  such 

that  

i) 
*f is bijective function 

ii) ( ) ( ) ( )( )( )*  2f e uv f u f v mod q= = +  
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Definition 3.2 

A graph obtained by assigning numbers to the vertices and 

edges through an even-odd harmonious labeling is known as 

even-odd harmonious graph. 

 

Remark 

We use the phrase “EOH labeling of graph” instead of the 

phrase “even-odd harmonious labeling of graph” in this paper 

for simplicity. 

 

Example 3.1 

 

 

 

 

 

 

 

 

 

 

       Fig. 1 EOH labeling of G  

IV. EVEN-ODD HARMONIOUS LABELING OF ACYCLIC 

GRAPHS 

 

In this section, we prove certain family of acyclic graphs 

admit the EOH labeling.  

 

Theorem 4.1  

The caterpillar graph ( ),t
mcat l r+

admits an EOH labeling 

when 3,  1m t  . 

Proof 

Let    :1 :1i jV l i l r j r=      be the vertex set 

of ( ),t
mcat l r+

where the vertices of the left side are il  and 

the vertices of right side are ir . Let 

 :1 ,1 ij i jE e l r i l j r= =     be the edge set of the 

caterpillar graph ( ),t
mcat l r+

. Here the caterpillar graph has 

p m t= + vertices and 1q m t= + − edges. 

Define an injective function 

( ) : 1,3, , 2 1f V m t→  + − such that 

( ) 2 1, 1   if l i i l= −    

( ) 2 2 1, 1 jf r l j j r= + −    

and an induced edge function 

( ) *  : 0,2,4,  , 2 1 2f E m t→  + − −  such that 

( ) ( ) ( )( )* * 2 2    2 ,  

1 ,1 

ij i jf e f l r l i mod q

i l j r

= = +

   
 

where 
*f is bijective. The functions f and 

*f  give EOH 

labeling of G .  

 

Therefore, the caterpillar ( ),t
mcat l r+

 is an EOH graph 

when   1n  . 

 

Example 4.1 

An EOH labeling of ( )5
8 6,7cat+

is shown in Fig. 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            Fig. 2 EOH labeling of  ( )5
8 6,7cat+

 

 

Theorem 4.2 

The 1-regular lobster graph admits an EOH labeling when 

2n  . 

Proof   

Let    :1 :1     1,2 i ijV u i n u i nand j=      = be 

the vertex set of 1-regular lobster where  iu  are the vertices 

of the path nP  and iju  are the vertices, which are adjacent to 

iu  for1     1,2i n and j  = .  

Let  1 :1 1i i iE e u u i n+= =   − 

 :1     1,2ij i ije u u i n and j=   = be the edge set of the 

1-regular lobster. Here the 1-regular lobster has 3p n=  

vertices and 3 1q n= − edges. 

Define an injective function 

( ) : 1,3, , 2 3 1f V n→  − such that 
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Case (i)  ( )0  2n mod  

( )
( )
( )

3 1 1,        

3 4 3 2 1,        
i

i if i isodd
f u

n i if i iseven

 − +
= 

+ + − +
 

( )
( )

( )1

3 1 3 1,        

3 2 5,        
i

i n if i isodd
f u

i if i iseven

 − + +
= 

− +
 

( )
( )
( )2

3 1 3,        

3 3,        
i

i if i isodd
f u

n i if i iseven

 − +
= 

+ −
 

Case (ii)  ( )1  2n mod  

( )
( )
( )

3 1 1,        

3 ,        
i

i if i isodd
f u

n i if i iseven

 − +
= 

+
 

( )
( )
( )1

3 1,        

3 2 5,        
i

n i if i isodd
f u

i if i iseven

 + −
= 

− +
 

( )
( )

( )2

3 1 3,        

3 1 1,        
i

i if i isodd
f u

n i if i iseven

 − +
= 

+ − +
 

and an induced edge function 

( ) *  : 0,2,4,  , 2 3 1 2f E n→  − −  such that 

Case (i)  ( )0  2n mod  

( ) ( ) ( )( )( )* *
1 3 4 6 1 2    2 , 

1 1

i i if e f u u n i mod q

i n

+= = + + − +

  −

 

( ) ( )
( )( )( )

( )( )
* *

1 1

3 6 1 2    2 ,        

3 6 2    2 ,        
i i i

n i mod q if i isodd
f e f u u

n i mod q if i iseven

 + − +
= = 

+ −

 

( ) ( )
( )( )( )

( )( )( )
* *

2 2

3 6 1 4    2 ,       

3 2 2 2    2 ,       
i i i

n i mod q if i is odd
f e f u u

n i mod q if i is even

 + − +
= = 

+ − +

 

 

Case (ii)  ( )1  2n mod  

( ) ( ) ( )( )( )* *
1 3 2 1    2 , 1  1i i if e f u u n i mod q i n+= = + +   −

 

( ) ( )
( )( )( )

( )( )( )
* *

1 1

3 2 1 1    2 ,        

3 2 1 2    2 ,        
i i i

n i mod q if i is odd
f e f u u

n i mod q if i is even

 + − −
= = 

+ + +

 

( ) ( )
( )( )( )

( )( )( )
* *

2 2

3 6 1 5    2 ,        

3 2 2 3    2 ,        
i i i

n i mod q if i is odd
f e f u u

n i mod q if i is even

 + − +
= = 

+ − +

 

where
*f is bijective. Here in all cases f  and 

*f  defines 

the EOH labeling of G . Thus, the 1-regular lobster admits  

EOH labeling when 2n  . 

Example 4.2 

An EOH labeling of 1-regular lobster is shown in Fig. 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Fig. 3 EOH labeling of 1 -regular lobster 

 

Theorem 4.3 

The coconut tree graph ,n mCT admits an EOH labeling 

when 2, 2n m  . 

Proof 

Let    :1 :1i jV u i n v j m=      be the vertex 

set of coconut tree where iu  are the vertices of the path nP  

and jv  are the m new pendent vertices at an end vertex of 

the path nP .  

Let  1 :1i i iE e u u i n+= =   

 : ,1ij i je u v i n j m= =    be the edge set of coconut 

tree. Here the coconut tree has p n m= + vertices and 

1q n m= + − edges. 

Define an injective function 

( ) : 1,3, , 2 1f V n m→  + − such that 

Case (i)  ( )1  2n mod  

( )
,        

,        
i

i if i is odd
f u

n i if i is even


= 

+
 

( ) 2 2 1, 1 jf v n j j m= + −    

Case (ii)  ( )0  2n mod  

( )2 1 , 1 
2

i

n
f u n i i− = +    

( )2 2 1, 1 
2

i

n
f u i i= −    

( ) 2 2 1, 1 jf v n j j m= + −    

and an induced edge function 

( ) *  : 0,2,4,  2 1 2f E n m→  + − −  such that 
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Case  (i)  ( )1  2n mod  

( ) ( ) ( )( )* *
1 1 2    2 , 1  1i i if e f u u n i mod q i n+= = + +   −

 

( ) ( ) ( )( )( )* * 2 1 2  2 ,   ,1ij i jf mve f u m n j mod q i n j= = + − + =     

Case  (ii)  ( )0  2n mod  

( ) ( ) ( )( )* *
1 2    2 , 1 i i if e f u u n i mod q i n+= = +    

( ) ( ) ( )( )* * 2 2 2    2 ,   ,1 ij i jf e f u v n j mod q i n j m= = + + =    

where, 
*f  is bijective. The functions f  and *f  provides 

the numbers on vertices and edges satisfying the conditions 

of EOH labeling of G . Thus, the coconut tree ,n mCT admits 

EOH labeling when 2, 2n m  . 

Example 4.3 

An EOH labeling of 3,5CT and 4,5CT is shown in Fig. 4 

and Fig. 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           Fig. 4 EOH labeling of 3, 5CT  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Fig. 5 EOH labeling of 4, 5CT  

 

Theorem 4.4  

The spider tree graph with n  legs and l  length admits an 

EOH labeling when 3n  , ( )1  2n mod and ( )0  2l mod . 

Proof 

Let    :1 ,1ijV v v i n j l=      be the vertex set of 

spider tree where v  is a center vertex, ijv are the  n legs and 

l length of the spider tree graph. Let  

 1 :1   1  1ij ij ijE e v v i nand j l+= =     − 

 1 :1i ie vv i n=     be the edge set of the spider tree. 

Here the spider tree has 1p nl= + vertices and 

q nl= edges. 

Define an injective function 

( ) : 1, 3,  , 2 1 1f V nl→  + − such that 

( ) 1f v =  

( )

( 1) 2,        

( 1) 1,        

( 1) 1,

( 1) 2,

ij

l n i j if bothi and j are odd

l n i j if both i and j are even
f

i l j if i isodd and j iseven

i l j if i is evenand j is

v

odd

+ − + +


+ − + +
= 

− + +
 − + +

  

and an induced edge function  *  : 0,2,4,  2 2f E nl→  −  

such that 

( ) ( ) ( ) ( )( )( )* *
1 3 2 2 1    2 , 

1    1  1

ij ij ijf e f v v l n i j mod q

i nand j l

+= = + − + −

    −

 

( ) ( )
( )( )( )

( )( )( )
* *

1

1 3    2 ,        

1 3    2 ,        
i i

l n i mod q if i isodd
f e f vv

l i mod q if i is even

 + − +
= = 

− +

 where 
*f  is bijective. Both the functions f and 

*f provides numbers to the vertices and edges satisfying 

EOH labeling of G . Therefore, the spider tree with n  legs 

and l  length admits EOH labeling. 
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Example 4.4 

An EOH labeling of the spider tree with 5 legs and length 4  

is shown in Fig. 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 EOH labeling of spider tree with 5 legs and length 4  

Theorem 4.5  

The star graph ,3mS  admits an EOH labeling 

when ( )1  2m mod . 

Proof 

Let 

       :1 :1 :1i i iV x u i m v i m w i m=         

be the vertex set of star graph where x  is a center vertex, 

,  , i i iu v w are the vertices of the path 3P  for 1 i m  . 

Let    :1 :1i i i i iE e uu i m g u v i m= =    =  

 :1i i ih v w i m =      be the edge set of the star 

graph ,3mS . Here the star graph has 3 1p m= + vertices and 

3q m= edges. 

Define an injective function 

( ) : 1,3, , 2 3 1 1f V m→  + − such that 

( )  2 1f x m= +  

( )1 6 1f u m= +  

( )2 4 1, 1 
2

i

m
f u i i= −    

( )2 1 2 4 1, 1 
2

i

m
f u m i i+ = + +    

( )2 2 4 1, 1 
2

i

m
f v m i i= + −    

( ) ( )2 1 4 1 1, 1 
2

i

m
f v i i− = − +    

( )1 4 1f w m= +  

( )2 5 2 2 , 1 
2

i

m
f w m i i= + −    

( )2 1 6 2 1, 1 
2

i

m
f w m i i+ = − +    

and an induced edge function 

( ) *  : 0,2,4,  2 3 2f E m→  −  such that 

( ) ( ) ( )( )( )* *
1 1 2 1    2f e f uu m mod q= = +  

( ) ( ) ( )( )* *
2 2 2 4    2 , 1 

2
i i

m
f e f uu m i mod q i= = +    

( ) ( ) ( )( )* *
2 1 2 1 4 4 2    2 , 1 

2
i i

m
f e f uu m i mod q i+ += = + +  

 

( ) ( )* *
1 1 1 2f g f u v= =  

( ) ( ) ( )( )( )* *
1 1 1 2 1 4    2 , 1 i i if g f u v m i mod q i m+ + += = + +  

 

( ) ( ) ( )( )* *
1 1 1 4 2    2f h f v w m mod q= = +  

( ) ( ) ( )( )* *
2 2 2 2 1    2 , 1 

2
i i i

m
f h f v w m i mod q i= = + +  

 

( ) ( ) ( )( )* *
2 1 2 1 2 1 2 2    2 , 1 

2
i i i

m
f h f v w i mod q i+ + += = +  

 

where 
*f  is bijective. The functions f  and 

*f give EOH 

labeling of G . Thus, the star ,3mS  admits EOH labeling 

when ( )1  2m mod . 

 

Example 4.5 

An EOH labeling of 5,3S  is shown in Fig. 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          Fig. 7  EOH labeling of  5,3S  
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V. CONCLUSION 

In this paper, we have proved that the family of acyclic 

graphs such as caterpillar, 1-regular lobster graph, coconut 

tree, spider tree and star graph admit the EOH labeling. 

FUTURE SCOPE 

We can find a family of cyclic graphs which will admit this 

EOH labeling. 
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