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Abstract: The major potential impacts of landfill leachate on 

the environment are groundwater and surface water 

contamination.To date, the percolation of bacteria and viruses by

 landfill leachate into the groundwater table poses a potential risk

 to public health and the environment and potential risks.This pa

per deals with the study of leachate dispersion of contaminants us

ing generalized dispersion techniques for solvent transport in por

ous media.The porous layer interface, the slip boundary conditio

ns of the beavers joseph bj are used, the governing equations are 

analytically solved and the expressions for speed and dispersion a

re obtained and graphically presented 

 

Keywords : Solid waste, permeability, generalized-dispersion 

technique.  

I. INTRODUCTION 

Groundwater contamination is a problem which affects every 

individual (Mritunjay et al.,2008). Groundwater flow and 

transport analysis have been an important research topic in 

the last three decades. The transport of dissolved 

contaminants or suspended contaminants (bacteria and virus) 

by flowing water is of great significance to study the relation 

between environmental protection and resource utilization 

(Zhang Qiau-fei et al., 2008). 

Municipal solid waste MSW has become one of the main fa

ctors that adversely affect the environment as the MSW issu

es increase the incidence of groundwater contamination. 

Hence the study of groundwater contamination resulting 

from MSW landfill leachate has become a focused issue 

nowadays (Xiaoli Liu et al., (2006). 

Most of the contaminants occur in nature as either point 

sources or distributed sources. Example of point source 

contamination are municipal waste sites (landfill), industrial 

discharges, leaks and spills etc. Distributed sources occur as a 

result of effluent from leaking sewers and septic tanks, oil 

and chemical pipelines. 

Landfilling has long been the major disposal method for both 

domestic and industrial wastes.  

Bacteria and virus from sewage sludges , waste water, 

septic tanks and other sources can be transported from 

groundwater to drinking water wells. During this transport, 

bacteria and virus can be either irreversibly or reversibly 

stored on surface material (Martin Reinhard,1984). Valsamy 

and Nirmala P.Ratchagar(2012) developed a mathematical 
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model to study the unsteady transport of bacteria and virus in 

groundwater. 

The main objective of this paper is to study the dispersion of 

contaminants following the generalized dispesion model of 

Gill and Sankarasubramanian (1970). The number density of 

the contaminated particle is constant. The fluid is assumed to 

be viscous, incompressible and contaminated (fine and 

coarse). The generalized dispersion theory developed can be 

extended to consider the dispersion phenomena for a wide 

variety of flows which are too complex to solve analytically 

(Rudraiah et al.(1986), Nagarani et al.(2006), Mallika and 

Rudraiah (2011) and Meena Priya and Nirmala P.Ratchagar 

(2011)). 

II. MATHEMATICAL FORMULATION 

The continuity and momentum equation of the motion of 

unsteady , viscous, incompressible fluid with uniform 

distribution of contaminated particles are given by : 

For fluid phase , 
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where, 

u  =  velocity of the fluid phase  ),( 1−LT  

 v = velocity of contaminated  phase  ),( 1−LT  , 

   = density of the fluid  ),( 3−ML  

  p = pressure of the fluid  ),( 21 −− TML  

  N = number density of contaminated particle ),( 3−M  

   = kinematic viscosity ),( 12 −TL  

  K= a6  = Stoke's resistance (drag    coefficient), 

dimensionless, 

a = spherical radius of the contaminated particle ),( 2L  

m= mass of the contaminated particle (M), 

 

 = coefficient of viscosity of fluid particle ),( 11 −− TML  

k = permeability of porous medium ),( 2L  

        t = time (T).  
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Figure1: Physical configuration

 
In this paper, we have assumed that the flow is unidirectional 

and parallel to a plates due to constant pressure gradient in 

that direction. Hence the momentum equation for fluid phase 

and contaminated phase in equation (2) and (3) takes the form 
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Equation (5) and (6) are solved subject to the initial and 

boundary conditions; 

u=0, v=0 at t=0 
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Substituting equation (7) into equation (5) and (6) and for 

simplicity neglecting the asterisks we get, 
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where 
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Since the applied pressure gradient is constant for t> 0, then 
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Hence the equation (8) and (9) becomes 
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The initial and boundary condition becomes, 

00,0 === tatvu  

b
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where, a, b and n are constants and   is the perturbation 

parameter(less than unity). 

III. METHOD OF SOLUTION 

Velocity Equations (11) and (12) are partial differential 

equations which can be solved analytically by employing 

perturbation technique. This can be done by representing the 

velocity as 
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Substituting equation (13) into equations (11) and (12), 

neglecting the higher order of (
2 ) and solving subject to the 

boundary conditions, 
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and velocity of contaminants as 
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where, 
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Average velocity is given by, 
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Dispersion coefficient 

The concentration of contaminants (fine and coarse) in the 

groundwater which diffuse in a fully developed flow, is given 

by 
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with the initial and boundary conditions, 
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where, 0C  is the concentration of the initial slug input of 

length sx .  

Introducing non-dimensionless variables, 
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Following Gill and Sankarasubramanian (1970), the solution 

to equation (19) can be written as a series expansion in the 

form 
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where, m  is the dimensionless cross sectional average 

concentration, given by 
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The generalized dispersion model with time dependent 

dispersion coefficient can be written as   
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Introducing equations (24) in (23) and making use of the 

boundary condition (ii) of (18) gives     
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Following Gill and Sankarasubramanian (1970) and noting 
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To evaluate sK i '  we should know sf k ' . Therefore we 

have to solve equation (30) subject to the initial and boundary 

conditions, 
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fk                            (36)                                                                                    

             (iii) 0)1,( =





Y

fk                           (37)                                                                                 

             (iv)  =

1

0

0),( dYYf k  ,  for k=1,2,3,…                                                                         

                                                         (38) 

From equation (26), we get  
1K as 

0)(1 =K                                          (39)                                                              

Equation (27) implies 

                             −=

1

0

122

1
)( dYUf

Pe
K   

Let 

                          ),()( 11101 yfyff +=     (40)                                                                                

where, )(10 yf  corresponds to an infinitely wide slug which 

is independent of   satisfies 
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(i) 0)(1011 =−= atYff    

(ii) 0011 ==



Yat

Y

f
        

(iii) 1011 ==



Yat

Y

f
 

(iv)  =

1

0

11 0dYf                                        (41)                                                         

Substituting (39) in (31) gives )(
)(

2

10

2

YU
dY

Yfd
=  and  

2

11

2

11

Y

ff




=






  is the well-known heat  conduction equation 

which is solved by separation of variables. 

 

Hence the solution of 
1f  is given by  
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and  mm =  

Therefore substituting 
1f  in equation (27) gives the solution 

of 
2K . Similarly )(3 K , ),......(4 K  are obtained and we 

found that 2),( iK i   are negligibly small compared to 

)(2 K . 

The dispersion model (24) takes the form              

2

1

2

2
X

K mm




=



 




         

In a similar manner we apply generalized dispersion method 

to find the velocity and dispersion coefficient for the 

contaminant phase.                                                              

IV. RESULTS AND DISCUSSION 

In this paper we have studied the dispersion of contaminants 

consisting a mixture of solid phase (fine and coarse) and fluid 

phase. Results of velocity and dispersion coefficient are 

obtained analytically and the numerical values have been 

computed using MATHEMATICA 8.0. 

Figures 2 and 3 represents that the effect of particle mass 

parameter on the velocity profiles of contaminated phase and 

fluid phase at a given instant of time.It is clear that, the 

velocity of fluid is  greater than the velocity of fine and coarse 

particle. 
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Fig. 2. Velocity profile for fluid phase 
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Fig. 3. Velocity profile for contaminant phase 
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Fig. 4. Dispersion coefficient varying with dimensionless 

time for fluid phase 
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Fig.5. Dispersion coefficient varying with dimensionless 

time for contaminant phase 

The time-dependent dispersion coefficient is evaluated using 

the generalized dispersion model which is valid for all time. 

The dominant dispersion coefficient is computed for different 

values of particle mass parameter and it is observed from the 

figure that the dispersion coefficient is greatest for coarse 

particle when compared with the fine particle and fluid phase. 

 

V. CONCLUSION 

Groundwater contamination by pathogenic bacteria and 

viruses has long been recognized as a serious hazard to 

human health . The release of leachate to the environment is 

one of the major environmental impacts related to disposal of 

waste. Disposed waste in landfills undergoes a series of 9 

phases where the waster is decomposed. During the 

decomposition leachate is generated by excess rainwater 

infiltrating the waste. 
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