
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April, 2020

1802

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8790049420/2020©BEIESP
DOI: 10.35940/ijeat.D8790.049420
Journal Website: www.ijeat.org



 Abstract: Malware is one of the all told the foremost security
threats on the net now a days. Some of the Internet problems like
denial of service attacks and spam e-mails have malware threat
cause. Computers involved with malware are however networked
together for making botnets, and major of threats or attacks are
basically launched with the help of these types of malicious and
attacker-controlled networks. Downloading files like Executable
files like .exe, .bat, .msi etc from sources of untrusted internet
probably having an opportunity of getting maliciousness.

Further it is seen that these executables are smartly obfuscated
with the help of some of the anomalous user for bypassing
antivirus stuffs. In this research work , we have proposed an
enhanced approach for detecting some of the malicious
executables files with the help of analysing the traced Portable
Executable (PE) files which are extracted from executable files
and use of PCA feature extraction method. The method used in
this paper consists of training a supervised binary classifier with
the help of these extracted features from the portable executables
files from the normal and malicious executables. Considering this
approach experimentation has been done on an outsized publicly
available dataset and it is seen that over 95% of classification
accuracy can be obtained.
 Keywords: Malware Analysis ,Machine Learning, , Feature
Extraction, PCA feature extraction.

I. INTRODUCTION.

Malware also known as malicious algorithms, which are sent
by hackers to infect machines or an entire network of an
organization. It exploits device bugs such as a legal program
bug related to a browser or web application plugin.
Infiltration of malware can have devastating effects like theft
of data, extortion, or paralysis of network systems [1,3]. The
standard method in malware detection by antivirus programs
is scanning a malicious file manually and then generate the
signature corresponding to it. Malware can cause multiple
damages to a network including data loss, data leaks and

Revised Manuscript Received on April 25, 2020.
 * Correspondence Author

Venkat P. Patil*, Electronics and Communication Engineering
Department, Smt. Indira Gandhi College of Engineering, Navi Mumbai
venkat.patil@sigce.edu.in

Hrushikesh Shukla, Computer Engineering Department, Smt. Indira
Gandhi College of Engineering, Navi Mumbai. stanhrishi@gmail.com.

Sankat Sawant, Computer Engineering Department, Smt. Indira Gandhi
College of Engineering, Navi Mumbai sanketdsawant1998@gmail.com

Zuzer Sakarwala, Computer Engineering Department, Smt. Indira
Gandhi College of Engineering, Navi Mumbai.
Sakarwalazuzer52@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

hardware failure. For daily notifications, the signatures will
be submitted to the client later. Nevertheless, inspecting
malicious files manually to acquire the signature may be
highly time consuming, boring and mistaken. In fact, to
acquire the signature, it requires domain knowledge. Machine
Learning methods are used for automating the process of
classifying an executable file as harmful or benign in order to
overcome the aforementioned limitations. Throughout the
study of malicious data, there are primarily two methods, such
as static as well as dynamic study. The process of Dynamic
solution involves performing a go in a secure environment as
a simulator to capture the file's behavioural information and
related environmental improvements. Less accurate is the
complex analysis. But a completely complex configuration is
necessary. For comparison, for the static analysis the dynamic
analysis is a little slower. The analysis related to static
process, on the other hand, consists of evaluation without it
running the components of the executable code. Yet static and
dynamic solutions are just as effective. In this paper we are
using the Malware Detection for Security Improvement based
PCA Feature Extraction Process. We mainly use the
corresponding Portable Executable file for review and use of
PCA-based feature extraction for checking that the data file is
malicious. Windows loader is given the PE file of every
executable file. This file includes details such as code length,
overlay height, the order of different parts of the file. The
latter details allow one to learn how a portable executable
(PE) file is executed. This also helps us in viewing malicious
images.
This paper contribution is as follow.
a. Retrieving the Portable executable files form the set of
given executable files.
b. Performing suitable feature extraction on these portable
executable files and then extracts the specified features for
the purpose of analysis.
c. Implementing the machine learning classifiers for
classifying the malicious and benign executables.
d. Applying PCA feature extraction on this dataset to
shortlisted features and achieved a final enhanced accuracy
whereas false positive rate was minimized which is tested
using precision and recall metrics.
e. Finally testing the obtained results for the performing
robust machine learning classifier.

The Rest of this paper is basically briefly summarized as
under. We have described the related works in section II and
in Section III highlights about the proposed approach
followed by experimental set up details and results in Section
IV.

Venkat P. Patil, Hrushikesh Shukla, Sanket Sawant, Zuzer Sakarwala

Impact of PCA Feature Extraction Method used
in Malware Detection for Security Enhancement

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
mailto:venkat.patil@sigce.edu.in
mailto:sanketdsawant1998@gmail.com
mailto:Sakarwalazuzer52@gmail.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.D8790.049420&domain=www.ijeat.org

Impact of PCA Feature Extraction Method used in Malware Detection for Security Enhancement

1803

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8790049420/2020©BEIESP
DOI: 10.35940/ijeat.D8790.049420
Journal Website: www.ijeat.org

At the end in Section V ,the concluding remarks and future
scope are summarized.

II. RELATED WORK

As mentioned in paper [1] basically an overview on different
types of machine learning approaches were summarized for
detecting malware . In this paper some of the references are
mentioned for exemplifying such methods. As mentioned in
paper [2], the concept of boosted decision trees working on
the principle of n- grams are found for producing very good
results than that of the Naive Bayes classifier and
SVM-Support Vector Machines. Author of [3], Shafiq et al.,
elaborated about employing techniques of data mining on
Portable Executable files for determining malicious files.
Basically they obtained their dataset from VX heavens and
Malfese. In this paper they got accuracy of through their
method. Author Shabtai at el. explained about different
taxonomies that classified methods of detection required for
malicious codes by using Machine Learning algorithms
using the approach of extracting static features from

executables files [4]. Authors in paper [5] basically used a
dataset of related 30,000 samples and then performed
operation of representation of byte sequence n-gram while
considering a probability to achieve accuracy of 95% and
with malicious samples lesser than 20% . In their paper ,they
basically made the evaluation of representation of Opcode
n-gram and further they claimed that it is possible to get
more than 99% accuracy along with dataset of lesser than
15% malicious content which they have found more than
their earlier practical experimentation [5]. As mentioned in
paper [6] “Hidden Markov Models” are basically used for
detecting to test about a given executable program file is
malicious or is not or a variant of a previous program file. For
reaching a similar requirement , author [7] basically employs
principle of ”Profile Hidden Markov Models”, which they
had earlier used with great success for the purpose of
sequence analysis related to bioinformatics application .
Authors Singhal and Raul as mentioned in their paper [8]
summarized an antivirus engine which basically extracts API
calls and then applies ML approach for detecting malicious
executable files . As explained by author in paper [9] ,
basically they made use of automatic extraction of
association rules on the platform of ”Windows API execution
sequences” for distinguishing between clean and malware
program files. Further use of association rules, but
considering honey tokens of known parameters, is mentioned
in paper [10]. Authors Vyas at el. Highlighted an approach
for detecting portable executable files on network with the
help of ML algorithms. In this approach basically they
summarized 28 features which were basically extracted
from the sources of packing and metadata imported from
DLL files. It was found that their system shows an accuracy
of 98.7% and also 1.8% false positive rate as mentioned in
paper [11]. As demonstrated by authors in paper [12],
principle of ”Self-Organizing Maps” are used for identifying
patterns of behaviour for viruses in Windows executable
files.

III. METHODOLOGY

The main aim of this particular section is to switch our earlier
the algorithm [13], so on correctly detect malware files and
at the same time forcing (as far as possible) a 100%
detection rate for one category. The main focus during in this
paper is for analysing the suitable features extracted from
Portable Executable of an executable by using PCA based
enhanced feature extraction for detection of malware for
security enhancement. Portable Executable of an executable
may be a collecting the information elements which are
basically required by windows loader platform . Portable
executable file basically contains various basic elements like
information overlay number, information sections size and
size of code. With help of these Portable executable file, we
will get idea of execution of the program.

A. The basic model architecture

The basic model architecture is shown in Figure 1 and 2 .
Here we have shown the architecture of two models of our
system models. For testing purpose We have considered
dataset and then accordingly trained our model. At the end of
finishing the training phase , we have used the executable
files and then extracted suitable features from it and after that
passed it further through the trained model for the purpose of
evaluation . It is to be noted that the measure used for the
purpose of evaluation of this model is accuracy and also
false positive rate. Our proposed model is basically a two
class classifier which takes basically input as an executable
file and offers ”output as a label showing whether a file is
malware or not.”

B. The System Components used:

The basic system model components for both the models A
and B as shown in figure 1 and 2 are described as follow.
1) Dataset used : In this paper we have trained our model

using a dataset available on Kaggle for free. The dataset is
in form of csv file which basically consists of features
extracted from Portable Executable files.

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April, 2020

1804

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8790049420/2020©BEIESP
DOI: 10.35940/ijeat.D8790.049420
Journal Website: www.ijeat.org

Figure 1: System Architecture -A. [13]

Figure 2: System Architecture -B.

2) Portable Executable Files: Basically this component
helps us regarding inputting an executable file in our
proposed system. After that It performs the operation of
extracting features of the Portable executable file from the
input executable files and organizes that of PE file in the
text file in a defined format. We can also extract all the
required features of PE with help of same text file .These
features extracted are then further processed by passing on to
the Feature Extraction block which extracts the required or
suitable features.
3) Feature Extraction process: Basically the input to this
particular block can be a row from dataset under
consideration or it can be extracted features from Portable
executable file. The purpose of this block is to select the
suitable features from the input data under consideration and
completes the respective pre-processing operation .
4) Machine Learning Classifiers:

The processed dataset used is further spitted into testing and
training sets . We have considered variable size of testing and
training data sets for getting different results. We changed the
training and testing sizes as per multiple ratios for getting
various results. Further various machine learning methods
are applied and then compared them as per their
performance on testing set accordingly.

5) Trained model: The best performing model is saved and
which can be used to make predictions on the testing files.
This model will help basically to make predict regarding

the given input file is malicious or benign.
C. System components based on Feature Extraction

Selection Using PCA:

It is seen that redundant and Irrelevant features can lead to an
machine learning classifier to finish training very slowly and
thus perform less accurately. In this paper, the PCA approach
which is also known as “the eigenvector regression filter or

the Karhunen-Loeve transform” is used for feature selection
purpose, which basically involves removing one or more of
the weakest principal components based on Eigen values and
variance, the resulting subset of raw features is sufficient
enough for preserving maximum data variance. The modified
architecture comprising of PCA based feature extraction is as
shown in figure 2.

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

Impact of PCA Feature Extraction Method used in Malware Detection for Security Enhancement

1805

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8790049420/2020©BEIESP
DOI: 10.35940/ijeat.D8790.049420
Journal Website: www.ijeat.org

IV. EXPERIMENTAL SETUP AND RESULTS

we have discussed in this particular section about the
different experimental set up and results that were obtained
by using different machine learning approaches on same data
set for two models A and B as shown in figure 1 and 2.

A. Consideration of Data Description and pre-processing

We downloaded our publicly available dataset from Kaggle.
The dataset is in form of csv file, where each row describes
information about a particular executable. Each row consists
of 75 features like size of overlay, magic number, section
entropies, etc. extracted from PE files. it is to be mentioned
that the last column of dataset basically represents the label of
the file; this label says whether the file is malicious or
benign. We selected 51 features out of the total 75 as rest of
them contained common or repeated values. As a solution to
this problem, we scaled all the values in our dataset between 0
and 1.

B. Basic Experimental consideration and results for
model –A

A The Machine learning model in our case takes input as
pre-processed features extracted from Portable executed files
and gives its prediction regarding whether the input features
are from malicious or benign file. The algorithms we
considered for classification are Decision tree, Naive Bayes,
Random forests, Artificial Neural Networks(ANN) and
Logistic Regression. We trained each of these models on
various percentages for training and testing. First 33% of total
dataset for testing and 67% of the same for training. We then
took 10% of total data for testing and 90% of the total dataset
for training. As we have 10,000 samples in total, 10% of it
(1000 samples) would be sufficient for testing purpose. Fig. 3
and 4 shows the performance of different machine learning
algorithms in terms of accuracy before and after scaling of
data. Figure 3 shows accuracy with testing size is 33% and
training size is 67% and Figure 4 shows accuracy with testing
size is 33% and training size is 67%.

 Figure 3: Results with training size is 67% and test size

is 33%.

Figure 4: Results with training size is 67% and test size is

33%.

 Figure 5: Results with training size is 90% and test

size is 10%.

 Figure 6: Results with training size is 90% and test size

is 10%.

Figure: 5 and 6 shows the performance of the used method or
algorithms before and after pre-processing the data by
considering the size of testing is fixed to 10% and at the
same time considering the size of training is fixed to 90%.
Figure 5 shows accuracy with testing size is 10% and
training size is 90%. Whereas Figure 6 shows accuracy with
testing size is 10% and training size is 90%.

Decision Tree Logistic Regression Random ForestArtificial Neural NetworksNaive Bayes 0

20

40

60

80

100

Algorithms

%
acc
ura
cy

67 %training (Not Normalised)

Decision Tree Logistic Regression Random ForestArtificial Neural NetworksNaive Bayes 0

20

40

60

80

100

Algorithms

%
ac
cur
ac
y

67 %training (Normalised)

Decision Tree Logistic Regression Random ForestArtificial Neural NetworksNaive Bayes 0

20

40

60

80

100

Algorithms

%
ac
cur
acy

90 %training (NOT Normalised)

Decision Tree Logistic Regression Random ForestArtificial Neural NetworksNaive Bayes 0

20

40

60

80

100

Algorithms

%
ac
cur
acy

90 %training (Normalised)

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April, 2020

1806

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8790049420/2020©BEIESP
DOI: 10.35940/ijeat.D8790.049420
Journal Website: www.ijeat.org

Table 1: Results without and with PCA based feature extraction.

Data

Metric

processed

Confusion
matrix

TP=0 ,
FN=501

FP=0
,TN=502

TP=400
,FN=93

FP=90
,TN=420

TP=450
,FN=83

FP=80
,TN=390.

TP=470
,FN=32.

FP=41
,TN=460

TP= 486,

FN=15

FP= 41 ,

TN=461

Accuracy

False
positive
rate

precision

recall

0.081

0.922

0.97

Processed data

30 columns

(feature

extraction by PCA)

0.944

0 0.811 0.844 0.936

0 0.17 0.17 0.081

0 0.816 0.849 0.919

0.5 0.817 0.837 0.927

76 columns

(without feature selection)

51 columns

(with feature selection)

Raw data Processed data Raw data Processed data

C. Experimental Setup and Results for Model B:

Results Using PCA Based Feature Extraction is shown in
Table 1 which shows Results without and with PCA based
feature extraction. This consists of 3 different considerations
as shown in table 1 In first one we kept all the 76 features
that we had initially. When the data was un processed we can
see the accuracy was quite low i.e. 50%. Even We had zero
precision and recall values. Whereas after processing the
data you can see that we got 81% 0f accuracy and precision
and recall of 81.6 and 81.1 percent respectively. In the
second case we had only 51 of the total 76 features. These 51
features were selected manually. We did this feature
extraction by removing unwanted features for example:
machine identifier: It tells us from which machine, the file
was collected, it’s a un necessary feature so we remove it.

Once we start working on this 51 features without
pre-processing we got accuracy of 83% with false positive
rate of 0.170 and precision and recall of 84.9 and 84.4%. On
the other hand, after pre-processing this data we got a better
accuracy of 92.7% and false positive rate of 8.1%. Lastly in
the third case, we then applied PCA feature extraction on
this dataset to shortlist 30 features and achieved a final
accuracy of 94.4% whereas false positive rate was of 8.1%
along with precision and recall of 92.2% and 97% each.

V. CONCLUSION

Malware is considered as a serious security threats on the
Internet today. It is found that most problems related to
internet like denial of service attacks and spam e-mails
have basically malware as their threat . In this research
paper, it has been demonstrated that the design of a binary
classifier having its robustness , which basically performs
the operation of classifying the files into malicious and
further benign with higher accuracy. The model
demonstrated in this paper enhances the security mechanism
with the help of PCA based feature extraction and detects
regarding the file is malware or not. By using basic model
working on the 51 features without pre-processing we got
accuracy of 83% with false positive rate of 0.170 and
precision and recall of 84.9 and 84.4%. On the other hand,
after pre-processing this data we got a better accuracy of
92.7% and false positive rate of 8.1%. We then applied PCA

feature extraction on this dataset to shortlist 30 features and
achieved a final accuracy of 94.4% whereas false positive
rate was of 8.1% along with precision and recall of 92.2%
and 97% each. Thus we get enhanced results with the
proposed model based on PCA feature extraction. The
proposed further work of this paper might elaborate basic
actions to be taken while the file is detected to be malicious
by using further modified algorithm.

REFERENCES

1. P. K. Chan and R. Lippmann, “Machine learning for computer
security,” Journal of Machine Learning Research, vol. 6, pp.

2669–2672, 2006.
2. J. Z. Kolter and M. A. Maloof, “Learning to detect and classify

malicious executables in the wild,” Journal of Machine Learning

Research, vol. 7, pp. 2721–2744, December 2006, special Issue on
Machine Learning in Computer Security.

3. M. Z. Shafiq, S. M. Tabish, F. Mirza, and M. Farooq, “Pe-miner:
Mining structural information to detect malicious executables in
realtime,” in International Workshop on Recent Advances in Intrusion
Detection. Springer, 2009, pp. 121–141.

4. A. Shabtai, R. Moskovitch, Y. Elovici, and C. Glezer, “Detection of

malicious code by applying machine learning classifiers on static
features: A state-of-the-art survey,” information security technical
report, vol. 14, no. 1, pp. 16–29, 2009.

5. R. Moskovitch, D. Stopel, C. Feher, N. Nissim, and Y. Elovici,
“Unknown malcode detection via text categorization and the imbalance

problem,” in 2008 IEEE International Conference on Intelligence and

Security Informatics. IEEE, 2008, pp. 156–161.
6. M. R. Chouchane, A. Walenstein, and A. Lakhotia, “Using Markov

Chains to filter machine-morphed variants of malicious programs,” in

Malicious and Unwanted Software, 2008. MALWARE 2008. 3rd
International Conference on, 2008, pp. 77–84.

7. M. Stamp, S. Attaluri, and S. McGhee, “Profile hidden markov models
and metamorphic virus detection,” Journal in Computer Virology, 2008.

8. P. Singhal and N. Raul, “Malware detection module using machine

learning algorithms to assist in centralized security in enterprise
networks,” arXiv preprint arXiv:1205.3062, 2012.

9. Y. Ye, D. Wang, T. Li, and D. Ye, “Imds: intelligent malware detection

system,” in KDD, P. Berkhin, R. Caruana, and X. Wu, Eds. ACM, 2007,

pp. 1043–1047.
10. M. Chandrasekaran, V. Vidyaraman, and S. J. Upadhyaya, “Spycon:

Emulating user activities to detect evasive spyware,” in IPCCC. IEEE
Computer Society, 2007, pp. 502–509.

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

Impact of PCA Feature Extraction Method used in Malware Detection for Security Enhancement

1807

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8790049420/2020©BEIESP
DOI: 10.35940/ijeat.D8790.049420
Journal Website: www.ijeat.org

11. R. Vyas, X. Luo, N. McFarland, and C. Justice, “Investigation of
malicious portable executable file detection on the network using
supervised learning techniques,” in 2017 IFIP/IEEE Symposium on

Integrated Network and Service Management (IM). IEEE, 2017, pp.
941–946.

12. I. Yoo, “Visualizing Windows executable viruses using self-organizing
maps,” in VizSEC/DMSEC ’04: Proceedings of the 2004 ACM

workshop on Visualization and data mining for computer security. New
York, NY, USA: ACM, 2004, pp. 82–89.

13. Hrushikesh Shukla, Sonali Patil, Dewang Solanki, Lucky Singh,
Mayank Swarnkar, Hiren Kumar Thakkar. "On the Design of
Supervised Binary Classifiers for Malware Detection Using Portable
Executable Files", 2019 IEEE 9th International Conference on
Advanced Computing (IACC), 2019.

AUTHORS PROFILE

Venkat P Patil is graduated in BE and M. TECH and
is working as faculty of engineering and technology
working since 30 years under various engineering
colleges of university of Mumbai affiliated colleges.
Currently working as
Vice-Principal /Associate Professor in Smt. Indira

Gandhi engineering college, Navi Mumbai since 25 years. His area of
research is image processing and computer vision and computer security. He
has published more than 50 research papers and more than 10 patents in the
field of Engineering and Technology.

Hrushikesh Shukla is an Under graduate student
of BE computer engineering studying in Smt.
Indira Gandhi engineering college, Navi Mumbai
and his areas of interest are information security,
machine learning, deep learning, big data. He has
published more than 2 research papers and 1 patent

in engineering and technology.

Sanket Sawant is an undergraduate Student of B.E
Computer engineering studying in Smt. Indira
Gandhi engineering college, Navi Mumbai and his
areas of interest are information security, machine
learning, deep learning, big data.

 Zuzer Sakarwala is an undergraduate Student of
B.E Computer engineering studying in Smt. Indira
Gandhi engineering college, Navi Mumbai and his
areas of interest are information security, machine
learning, deep learning, big data.

